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Abstract This is a follow up to “Solution of the least squares method problem of
pairwise comparisons matrix” by Bozóki published by this journal in 2008. Familiar-
ity with this paper is essential and assumed. For lower inconsistency and decreased
accuracy, our proposed solutions run in seconds instead of days. As such, they may be
useful for researchers willing to use the least squares method instead of the geometric
means method.
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1 Introduction

Finding a consistent approximation for a given inconsistent pairwise comparisons
(PC) matrix by the least squares method (LSM) for an Euclidean metric was recently
presented in Bozóki (2008). The inspiration for writing this short note was the 3 days
entry in Table 2 in Bozóki (2008) as the CPU time required to compute the case of
a matrix for n = 8. We concluded that not many users are patient enough to wait
three days for the results to be computed. It is important to mention here that real-life
applications may require modifications of the values in the PC upper triangle many
times and 50 or more changes are not uncommon. With each change requiring three
days of computations, we would need additional 150 days to complete our project.

The problem under consideration is of the following form (we present the normal-
ized version, see e.g., Bozóki (2008) for details): min

∑n
i=1

∑n
j=1 (vi/v j − ai j )

2 for
∑n

j=1 v j = 1 and v j > 0, j = 1, . . . , n.
As shown in Bozóki (2008), it may have multiple solutions. However, all known

examples having “distinct” solutions are far enough from solutions that appear in
real-life situations. We are almost sure (subject to further research) that multiple solu-
tions may appear when high inconsistency takes place, as explained below. However,
selecting the one which is the closest to a geometric means (GM) solution (or simply
the GM) is a practical remedy for this problem.

2 Practical assumptions for the simplification

It is a realistic assumption that the pairwise comparisons method is predominantly
used for processing highly subjective assessments. Subjective assessments need this
method for processing. For processing measurements or objective data, there are nearly
always methods based on mathematical formulas, equations, partial differential equa-
tions, or a system of linear equations. So, we decided to decrease the accuracy to two
significant figures since subjective assessments do not reach one percent accuracy.
We recommend a GM solution as a starting point for better convergence since GM
and LSM solutions are identical for fully consistent matrices and they are not dras-
tically different for matrices which have a low inconsistency indicator (as defined in
Koczkodaj (1993)). In a situation where the low inconsistency does not guarantee a
single solution or a unique solution, we can always select the one which is closest to
the GM solution by the Euclidean distance or revert to the GM solution.

The importance of the inconsistency analysis and control was stressed in Koczkodaj
(1993) but better presented in Bozóki and Rapcsák (2008). By the GIGO (garbage in,
garbage out) rule, the search for a very precise solution for a highly inconsistent pair-
wise comparisons matrix does not make much sense since the high inconsistency indi-
cates the presence of contradictory assessments (probably on the basis of a cycle such
as a > b, b > c, c > a) or partial contradictory assessments such as ratios: A/B = 2
and B/C = 2 yet A/C = 5. Apparently, A/C = 5 may be correct if either A/B = 2.5
or B/C = 2.5 were entered into our PC matrix. We may never know which of the
three ratios was incorrect, but identifying such a triad is a considerable step forward.
Reducing a triad to two ratios is not possible. For only two ratios, we can have only
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inaccuracy but not inconsistency. Inconsistency is caused by excessive and conflicting
data. The careful reader may have noticed that there is no precise solution to: A/B = 2
and B/C = 2 yet A/C = 5. Only compromised solutions exist. Compromised values
may be: A = 2.15443469, B = 1, and C = 0.464158883 with the reconstructed
ratios: A/B = 2.15443469, B/C = 2.15443469, and A/C = 4.641588834 which
are definitely different from the given ratios (2, 5, 2).

The hierarchical structure and a limit of pro members in each group is another
reasonable limit assumed for our implementation. Seven elements give 21 pairwise
comparisons and is a realistic assumption for the human impatience limit (the number
of comparisons grows with the square). Neither of our solutions assumes any limit
for n, but the growing n is expected to impact the speed of computations and their
accuracy.

3 Practical solutions

In order to show the advantages of the idea of using the GM solution we used Solver
(standard tool attached to MS Excel) and our randomized algorithm implemented in
Java. The details of both attempts are described below.

MS Excel’s Solver can be used to obtain results in less than one second for every
tested case of n from 3 to 7. The accuracy is higher than we needed. According to
Microsoft:

Excel Solver uses the Generalized Reduced Gradient (GRG2) Algorithm for
optimizing nonlinear problems. GRG2 is based on quasi-Newton algorithm as
its default choice for determining a search direction. This algorithm was devel-
oped by Leon Lasdon, of the University of Texas at Austin, and Allan Waren,
of Cleveland State University.

There are, however, two authors in Lasdon and Warren (1997) (a downloadable
document available on the Internet) with one of the references to Lasdon et al. (1978).
There is no question about the soundness of this well-known optimization algorithm.

Appendix A illustrates an example of how MS Excel Solver can be used for a 4 by
4 case. MS Excel Solver has one significant drawback: it produces numbers which are
often hard to use for further specialized processing. Thus, we used another approach
to solve this problem: a randomized local search algorithm in Java. It is also fast
(milliseconds of CPU time) and accurate enough (we assumed 0.001 accuracy for all
coordinates of our solution vector). The main idea of the method is to perform a line
search, while each time only one randomly chosen coordinate is changing. The key to
success was choosing the GM solution to be a starting point.

Appendix B shows a description of the algorithm used for Java implementation.
The authors will eagerly share the Java code with readers but 10 pages of code is too
large for including here. It is posted (together with the MS Excel Solver solution) on
the Internet at a URL specified in [6] with a Readme.txt file which provides informa-
tion about files and their use. A combination of a decision table with pseudocode has
turned to be the most efficient way of what is a very simple case of a Monte Carlo
simulation.
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4 Conclusions

This presentation has removed one big shortcoming of LSM which was the substantial
CPU time. However, an essential shortcoming of the least squares method is the high
sensitivity with respect to outliers. The only solution is to avoid outliers by the incon-
sistency analysis as explained in Sect. 2.

For subjective assessments, a high accuracy of a solution is not important. Two
significant digits give an accuracy of one percent. It is more than sufficient for the
input data which is often on a scale of 1–5 (used in Koczkodaj (1993)) or 1–9 (used
in Bozóki (2008); Bozóki and Rapcsák (2008)) and the distance-based inconsistency
indicator with the acceptable level assumed to be 1

3 , as explained in Koczkodaj (1993).
We do not claim that our method may work for every pairwise comparison matrix

but it is fast (fractions of a second instead of hours) for not-so-inconsistent pairwise
comparison matrices that appear in most real-life problems. For n = 4, it required
3,090 changes in the solution vector and 22,938 for n = 7. If it does not work, it is
very likely because of high inconsistency for which using the initial geometric means
solution is good enough.

Appendix A: Using MS Excel solver

1 A B C D E F
2 Matrix P GM GM norm
3 1 2 5 9 3.0800703 0.521813
4 0.5 1 3 8 1.8612097 0.315318
5 0.2 0.333333 1 4 0.7186082 0.121744
6 0.111111 0.125 0.25 1 0.2427459 0.041125
7 Sum: 5.9026341
8 0.4599501 0.3736534 0.1183795 0.048017
9 Matrix Q
10 1 1.230954 3.885385 9.578903 0.4599501
11 0.812378 1 3.156402 7.781692 0.3736534
12 0.257375 0.316816 1 2.465368 0.1183795
13 0.104396 0.128507 0.405619 1 0.048017
14 Sum: 1
15 Matrix P-Q
16 0 0.591432 1.242367 0.335129
17 0.09758 0 0.024462 0.047658
18 0.003292 0.000273 0 2.355096
19 4.51E-05 1.23E-05 0.024217 0
20 Sum: 4.721563

• Enter matrix P into A3 :D6 by setting “1”s on the main diagonal, filling the
upper triangle with input numbers, and p ji = 1/pi j in the lower triangle (e.g.,
A4 = 1/B3, A5 = 1/C3).

• GM = vector of geometric means, e.g., E3 = (A3∗B3∗C3∗D3)∧(1/4). Copy the
formula to E4 :E6.

• E7 =SUM(E3 :E6) is the sum of all GMs.
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• Enter F3 =E3/$E$7 (remember to use absolute reference in $E$7). Copy the
formula to F4 :F6.

• Copy matrix P (A3 :D6) to A8
• Copy ‘special’ (F3 :F6) into F10 :F13 as values and sum them up in F14 (the sum

should be equal to 1).
• Enter the values of GMs into A8 :D8 using formulas, e.g., A8 =F10, B8 =F11

and so on.
• Reconstruct the upper triangle of A10 :D13 from F10 :F13 and A8 :D8 by dividing

vi/v j (vi are in F10 :F13 and v j are in A8 :D8)
• Set A16 = (A3−A10)∧2 and copy to A16 :D19.
• Set D20 =SUM(A3 :D16).
• Start the Solver
• Set ‘Target Cell’ to $D$20;
• Select Min for ‘Equal to’;
• Set ‘By changing cells’ to $F$10 :$F$13;
• Set ‘Subject to constrains:’ to $F$14 = 1;
• Choose options. Check the checkbox ‘Assume non-negative’. Go back to the main

window. Press the command button ‘Solve’.
• The solution is in the cells $F$10 :$F$13. The optimal (minimal) value of LSM is

in D20.

Appendix B: Algorithm for Java implementation

The vector v = [v1, . . . , vn] is used for storing a solution; initially it is a
normalized vector of geometric means.
The matrix Q is reconstructed from [vi/v j ].
The irand is a random integer number in the range from 1 to n where n is
the length of the matrix P.
The delta value initially assumed to be 0.001 for changing virand .
The SumSQ is computed as

∑
(pi j − qi j )

2.

Monte Carlo LSM Rules
Conditions

SumSQ is decreasing for delta Y N N Y N
SumSQ is decreasing for −delta N Y N N Y
delta unchanged 5 times N N N N

Actions
v(irand) := v(irand) + delta X X
v(irand) := v(irand) − delta X X
delta := delta/2 X X X

while SumSQ not minimal do
perform actions specified in the decision table

end while
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