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Abstract-The government assigns a budget for rehabilitating abandoned mines. While it is 
usually impossible to accomplish a total rehabilitation within a limited budget, we will show how to 
achieve the best possible allocation of funds. 

We present our solution in two stages. First, we describe a simple solution which is already a good 
approximation to the best solution. Then we outline a solution which is the best within the precision 
of any expert’s ability to judge the cost and the benefit of the undertaken remedial actions. 

1. PROBLEM DEFINITION 

Any decision related to abandoned mine hazards must contribute to the safe and secure living 

conditions of current and future generations. The best solution is to remove all symptoms of the 

abandoned mine which might be hazardous for people and the environment. This, however, is 

unrealistic in a short term perspective. Limited public and private funds should be allocated in 

a manner that will improve the public health conditions and safety. 

Each rehabilitation remedial action should have an effect which we call benefit. Our guiding 

principle is to achieve the maximal possible benefit per dollar spent from a budget. 

The complication inherent in the considered situation is due to the fact that remedial actions 

are interrelated. A rehabilitation of a mine may consist of several remedial actions such that the 

sum of the costs of fulfilling them separately might be higher than the cost of doing all of them at 

one time. Furthermore, the benefit from accomplishing each of the interrelated remedial actions 

might be higher if other remedial actions are accomplished too. 

Nevertheless, for the sake of simplicity, first we consider the problem under the assumption 

that the costs and the benefits from accomplishing different remedial actions are independent. It 

is worthwhile to implement this approach all the way down to a software system. The software 

simulation will serve to get a clear idea of the situation at hand by providing a rough solution to 

the problem of mine rehabilitation. It will also serve to test and analyze the final, more refined, 

solutions. We will call this simpler model “the independent remedial actions case.” 

The main conceptual notions which we will use are: remedial action, cost (of the remedial 

action), benefit (from accomplishing a remedial action), the budget, the total cost of a solution 

(which must not exceed the budget), and the total benefit of a solution (which should be maximal). 

In the advanced analysis, the cost and the benefit will be associated with some sets of interrelated 

remedial actions. This may lead to insurmountable complications. However, we reformulate the 

general case in such a way that the issue of interrelation is replaced altogether by a simpler 
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notion of disjoint clusters of remedial actions. Hence, we will be able to solve the general problem 
efficiently (see Section 3) in a way which takes into account advantages related to the proximity 
of the actions. It is reasonable to assume that a cluster may be associated with a mine site on 
which there are number of hazards. 

The problem at hand is of a finite discrete nature (since the number of mines and remedial 
actions is finite), but to show clearly the direction of our ideas to the reader, first we will briefly 
describe the continuous version of the independent remedial actions case in Section 2. Then in 
Section 3, we will write about the algorithmic approaches to the case of independent remedial 
actions. Section 3 is devoted to the general case. 

REMARK. Some readers may prefer to skip Section 2 (especially if they are not fond of the 
measure theory) and start their reading from Section 3. 

2. CONTINUOUS MODEL 

When the number of remedial actions is high while the cost of each remedial action is a 
comparatively small fraction of the budget, we encounter a situation which is approximated well 
by a continuous model. This is one more reason for considering the continuous model. 

The model consists of an atom free measure space of remedial actions (T, cost) and of a mea- 
surable nonnegative real-valued function p : T --+ R, which is a derivative of the benefit with 
respect to the cost in the following sense. 

Let A be a measurable subset of T (i.e., cost(A) is defined). Then 

Bene(A) = J pd(cost). 
A 

The above equation serves as a definition of the benefit function Bene in our continuous model. 
The goal is to find a measurable subset S of T such that under the constrain cost(S) 5 budget, 

Bene(S) is maximal-then S is the optimal set of remedies; in general, such an optimal set does 
not need to be unique. 

We make realistic assumptions that cost(T) and Bene(T) are finite. 
Furthermore, if cost(T) does not exceed the budget, then the problem is trivial: S = T 

is obviously the (most satisfactory!) solution. Unfortunately, the available funds are seldom 
sufficient to cover all desirable remedial expenses. Thus, in what follows, we assume (realistically 
again) that: cost(T) > budget. 

REMARK. We could also start from the benefit function as one of the primary notions from 
which we would derive the notion of the derivative p of the benefit with respect to cost as in the 
Radon-Nikodym Theorem (see [ 11). 

Let s be the greatest lower bound of all real numbers y for which Bene(p-‘( [y, 00)) < budget. 
Let S = pml([s,m)). Then cost(S) > budget. If cost(S) = budget, then we let S = S. Set S 

is a solution and even (in this case) the unique solution to our problem. 
Otherwise, when cost(S) > budget, then there exists (not unique) subset A of p-‘(y) such 

that cost(A) = cost(S) - budget; such a set A exists because we assumed that cost is a measure 
free of atoms (see [l]). N ow we define S = S\A. Then cost(S) = budget and set S is a desired 
optimal solution. 

REMARK. While solution in general is not unique, all optimal solutions S are contained in S. In 
practice, from the global point of view, the optimal solutions will tend to differ only marginally. 

3. DISCRETE MODEL-THE INDEPENDENT 
REMEDIAL ACTIONS CASE 

Let: T be a finite set-elements of T are called remedial actions, cost : T + R be a real-valued 
function which assumes positive values, Bene : T --+ R be another function, which assumes 



Abandoned Mines Budget Allocation 3 

positive values, and X be a subset of T. Then cost(X) and Bene(X) are defined as the sum of 
the costs cost(z) and benefits Bene(z) for all elements z E X. 

REMARK. These are exactly the above assumptions of additivity of the cost and the benefit func- 
tions that are characteristic for the case of independent remedial actions. We will see, however, 
that the fully general model of interdependent remedial actions can be formulated in a way which 
doesn’t differ too much from the present case. 

If cost(T) < budget then, trivially, S = T is the unique optimal solution. Thus, from now on, 
we will assume (quite realistically) that cost(T) > budget. 

We define a “benefit per dollar” function p : T -t R as follows: 

Bene( t) 
p(t) = -. 

cost(t) 

Let n = ITI be the number of all remedial actions. Let us order the remedial actions 

to, t1,. . . , t,_l according to their benefit per dollar values, in the decreasing order: i.e., p(te) 2 

p(h) 2 . . . 2 P(L1). 

A strong initial candidate for a solution is the set A defined by the following simple “greedy” 
algorithm (described below in pseudo C language): 

ALGORITHM. 

A = emtpy; 
Ic = 0; // initialization 
while((cost(A) < budget) and (Ic < n)) 

{ if(cost(A) + cost(&) 5 budget) 
A = A u {tk}; // include tk into A 

k++; 

We would normally obtain from the above procedure a set A of the form: A = {to, tl, . . . , tk_l}, 
where k is the smallest integer for which cost(tc) + . . . + cost(&) = cost(A) + cost(tk) > budget. 

In the lucky instance (not very likely) when cost(A) = budget, such a set A = {to,. . . , &-I} 
is the unique optimal solution. (But from now on we don’t assume that A is necessarily of the 
form {to, ti,. . . ,tk_l}. 

The solution produced by the greedy algorithm tends to be nearly optimal under wide circum- 
stances. In general, when the number of remedial actions is high while the cost of the remedial 
actions, relative to the budget, are low, then the set A produced by the greedy algorithm still is a 
nearly optimal (or even an optimal) solution. Even more generally, set A is a nearly optimal so- 
lution when the remaining remedial actions, which form set T\A, have costs which are relatively 
low when compared to budget. 

In the future, we will develop other advanced algorithms which will produce nearly optimal 
solutions S, perhaps superior to the above solution A. But solution A is already rather strong 
and so simple that first we will always estimate how much there is to gain by applying more 
sophisticated procedures. On the other hand, the example in the Appendix at the end of this 
note shows that there are limitations to the greedy algorithm. 

We said from the beginning that our main guiding principle is to maximize benefit per budget 
dollar spent. This would be the whole principle in the continuous case, when the entire budget 
would be utilized. The maximal utilization of the budget (essential when cost(T) > budget ) is 
our other, auxiliary principle. Indeed, in the discrete case, the sum of costs of any selection of 
remedial actions might not add up to the full budget. But we will consider as admissible solutions 
only those which we call saturated. These are the subsets X of T such that cost(X) 5 budget, 
while cost(Y) > budget for any superset Y of X (where Y is also a subset of T). 

The solution A, produced by the greedy algorithm described above, is always saturated, hence 
admissible. 
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4. DISCRETE MODEL, INCLUDING 
INTERRELATED REMEDIAL ACTIONS 

The challenge of rehabilitating a mine may consist of several remedial actions of which, due to 

the shortage of funds (budget), only some would be done. If we consider two remedial actions at 

different mines, especially if the distance between mines is significant, then the cost of performing 

two such remedial actions is the sum of the costs of the remedial actions considered separately. 

The same is true for the benefit obtained from performing two such remedial actions. 

When two or more remedial actions concern only one mine, or even a cluster of mines situated 

in the same local area, then the above additive rules concerning their total and separated costs 

and benefits are no longer true. Thus, we are forced to consider selections of remedial actions 

instead of individual remedial actions when we discuss their costs and benefits. 

Thus, remedial actions are clustered into groups (e.g., mine sites), where there is no interdepen- 

dence between remedial actions from different groups. On the other hand, a group of (perhaps) 

interdependent remedial actions admits 2n possible selections (including the empty and the full 

selection)-a number which grows fast when n increases. Even for a group of n = 8 remedial 

actions, we get an uncomfortably high number of 256 possible selections, and when n = 12, then 

the number of selections would already be 4096. It’s clear that there do not exist the means 

sufficient to evaluate the costs and benefits of all selections, especially that the number of mines 

in question is in thousands. 
It follows that only some selections of (interrelated) remedial actions will be evaluated. From 

now on, we will call them clusters. These clusters (of remedial actions) will be identified by 

the institution responsible for mines rehabilitation. Thus, in the present general model, our 

fundamental notions are the following: remedial actions, clusters, groups (of remedial actions), 

costs, benefits, and budget. 
Thus, from now on, we use the word group in a formal way. We assume that each remedial 

action belongs to one and only one group. Clusters are sets of remedial actions, and each cluster 

is contained in one (and only one, of course) group, which varies for different clusters. Let C be 

the set of all clusters. Then cost and benefit are real-valued, positive functions defined in C: 

cost : C + R and Bene : C + R. 

The set of all groups will be denoted by G. Thus T = U G, i.e., the set of all remedial actions, T, 
is a union of all groups. 

Some (or even all) clusters may consist of one remedial action only. 

We assume that for each group X E G there exists a set F of clusters which partitions X, i.e., 

such that every remedial action from X belongs to one and only one of the clusters from F. 
Attention: in addition to clusters from a partition F of X, group X will most likely contain a 

lot of clusters outside F as well; furthermore, group X may admit not just one partition like F, 
but many of them (our minimal requirement is that there is at least one). 

REMARK. The last assumption requires an effort on the part of the institution which carries 

the rehabilitation of mines--there must be an evaluation effort conducted which would deal with 
the sufficient number of clusters. But our condition is natural and virtually necessary anyway if 
a reasonable optimization is expected. Otherwise, some groups would not have a chance to be 
completely included into the rehabilitation program-a rather undesirable situation. 

REMARK. On the other hand it’s preferable not to evaluate a selection of remedial actions 

if complementary evaluations, adding up to a partition of the respective group, are not going 
to be conducted. Such “noncomplementable” evaluations cannot be utilized very usefully, and 
they certainly diminish the efficiency of the algorithms which search for optimal solutions to the 

mine rehabilitation program. Thus, the mine rehabilitating institution may save on the effort of 

performing evaluations of noncomplementable clusters. 
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The most significant relation between clusters is disjointness. Indeed, by a solution we will 

mean a saturated collection of clusters, every two of which are disjoint-“saturated” means that 

no cluster can be added to the collection without the sum of the costs of the clusters exceeding 

the budget. Once again, our goal is to obtain a solution for which the benefit per budget dollar 

spent is the highest (or nearly so). 

Once again, our first algorithm will be the “greedy algorithm” similar to the one described in 

Section 2. However, this time we expect that more advanced algorithms, including algorithms 

based on the concept of simulated annealing, will be more advantageous, more so than in the 

simpler case of independent remedial actions, covered in Section 2. 

5. CONCLUSIONS 

We would like to stress the simplicity of our final approach, when compared with the much 

more complex problem of dealing with the involved notion of interrelated remedial actions. We 

reduced the situation to studying disjoint clusters which are just as independent as remedial 

actions were in Section 2, i.e., the cost and the benefit from accomplishing a collection of pair-wise 

disjoint clusters is the sum of the costs and benefits, respectively, of the clusters belonging to the 

collection. This reduction makes the general rehabilitation problem algorithmically feasible. 

APPENDIX 

In practice, the cost of a remedial action or of a cluster is only a small fraction of the budget. 

Thus, in practice, the simple greedy algorithm will perform quite well. This is true for the 

mine rehabilitation program as well as for any program which consists of relatively small actions. 

Only when there are large actions will we truly need algorithms which outperform the greedy 

algorithm. Below are two examples which illustrate the issue. We assume in these examples that 

all actions are independent from one another. 

EXAMPLE 1. We have only three actions to, ti, t2. The costs are: cost(te) = cost(ti) = 10, 

cost(ts) = 100, while budget = 119. The benefits from performing the given actions are 

Bene(tc) = Bene(ti) = 100 and Bene(ts) = 999. Thus, the benefits per dollar are: p(h) = 10, 

p(t1) = 10, p(t2) = 9.99. 

Let’s remember and stress again that the above example is superficial and not characteristic 

of real situations at all. We provide it to give a fuller understanding of our topic, and also to 

show the limitations of the greedy approach, especially when someone would like to extend our 

methods beyond the application presented here. 

It follows that the greedy algorithm will find solution S = {to, tl} which is saturated and which 

indeed is even optimal since it gives maximal benefit per dollar. But, perhaps, the situation is 

not satisfactory. Despite the optimality, the budget is far from being fully utilized. Thus, one 

may redefine the problem; instead of optimizing the benefit per dollar, one may simply optimize 

the total benefit. In the latter case, S’ = {to, t2) would be one of the two optimal solutions. 

EXAMPLE 2. The budget is again 119. There are 102 actions: to, tl, . . . , tlol. Their costs 

are: cost(te) = cost(ti) = 10, cost(ts) = 100, and cost(ts) = ... = cost(tisi) = 1, while 

Bene(te) = Bene(tr) = 100, Bene(t2) = 799, and Bene(ts) = ... = Bene(tisi) = 1. 

This time the greedy algorithm provides us with solution S = {to, tl, t3,. . . , tlol}, which is 
not optimal. It fits the budget perfectly (cost(S) = 119), but its benefit is only Bene(S) = 299; 
hence, benefit per dollar is under 3; to be precise, it is equal to 299/119. 

This time, the greedy algorithm provides us with the solution S = {to, tl, t3,. . . , tlol}, i.e., 
S consists of all actions, but t2. The solution S fits the budget perfectly (cost(S) = 119), but 

S is not optimal. Indeed, the benefit per dollar is under 3; to be precise, it is equal to 299/119. 
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One of the optimal solutions is the following: S’ = {to, tz, ts, . . . , tzl}. The cost of S’ equals the 

budget again: cost(S’) = 119 while the total benefit derived from S’ is much higher (Bene(S’) = 

828) and so is the benefit per dollar; it is nearly 7; to be exact, it is 828/119 = 6.966.. . 

We are reminded that this happens when there are large actions which provide considerable 

benefit per dollar. In the case of the mine rehabilitation program, each of the actions costs only 

a small fraction of the budget; hence, the greedy algorithm will perform quite well. 
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