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Abstract 

A formal proof of convergence of a class of algorithms for reducing inconsistency of pairwise comparisons (PC) method 
is presented. The design of such algorithms is proposed. The convergence of the algorithms justifies making an inference 
that iterated modifications of the pc matrix made by human experts should also converge. This is instrumental for credibility 
of practical applications of the pc method. 
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1. Basics of the pairwise comparisons (PC) method 

The pc method, introduced by Thurstone in 1927 
[ lo] is a powerful inference tool and may be used as a 
knowledge acquisition technique for knowledge-based 
systems. This paper is a follow-up to [ 61 and [ 21. 
Reading [ 31 may also be helpful for understanding 

why the proof of convergence of the consistency is 
important for the pc method. The goal of the pc method 
is to establish the relative preferences of N stimuli 
in situations in which it is impractical (or sometimes 
even impossible) to provide estimations of the stimuli 

by direct rating (see [ 7,3] ) . Experts provide pairwise 
comparison coefficients aij > 0, i, j = 1,. . . , N, as 
substitutes for the quotients Si/Sj of the unknown (or 
even undefined) absolute values of stimuli si, Sj > 0. 
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The quotients Si/Sj are also sometimes called relative 
weights. 

The coefficients aij are expected to satisfy some 
natural restrictions (e.g., aii = 1, L&j * aji = 1; see 
below). For the sake of our exposition, we consider 
the pc N x N matrices simply as square matrices A = 

(aij) such that aij > 0 for all i, j. 

A PC matrix A is called reciprocal if aij . aji = 1 for 
all i, j (then automatically aii = 1 for all i = 1, . . . , N) . 
A PC matrix A is consistent if aij * ajk . ski = 1 for ev- 
eryi,j,k= 1,. . . , N. While every consistent matrix is 

reciprocal, the inverse fails in general. Consistent ma- 
trices correspond to the ideal situation in which there 
are exact values ~1, . . . , sN for stimuli. The quotients 

aij = Si/Sj form a consistent matrix. Conversely, the 
theoretical foundation of the pc inference is Saaty’s 
Theorem (see [ 81) , which states that for every N x N 
consistent matrix A = (aij) there exist positive real 
numbers sl,,.. , SN such that aij = Si/Sj for every 
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i,j = 1,. . . , N. The vector s = (st , . . . , SN) is unique 
up to a multiplicative constant. 

2. Approximation of pairwise comparisons 
matrices 

The challenge posed to the pc method comes from 
the lack of consistency of the pc matrices that arise in 
practice since they often reflect subjective judgements 

expressed by human experts. Such judgments are quite 
often not only imprecise but inconsistent. 

Example. Consider comparing four stimuli A, B, C, 
and D. Suppose we estimate ratios A/B as 2, B/C as 
3, and A/C as 5. Evidently something does not “add 
up” since (A/B) . (B/C) = 2 .3 = 6 and obviously 
is not equal to 5 (that is, A/C). With the inconsis- 
tency factor 0.17 the above triad marked by values 
in frames (see below) is the most inconsistent in the 
entire matrix (reciprocal values below the main diag- 

onal are not shown). A rush judgment may cause us 
to believe that A/C should indeed be 6, but we do 
not have any reason to reject the estimation of B/C 

as 2.5 or A/B as 513. After correcting B/C from 3 to 
2.5 (an arbitrary decision usually based on additional 
knowledge gathering) the next most inconsistent triad 
is (5,4,0.7) with the inconsistency factor 0.13. Ad- 
justment of 0.7 to 0.8 makes this triad fully consistent 
(5 . 0.8 is 4) but another triad (2.5,1.9,0.8) has in- 

consistency 0.05. By changing 1.9 to 2 the entire table 
becomes fully consistent. (See Fig. 1.) 

The above example follows only one path of pos- 
sible changes while each time there is a continuum 
(that is the power of the set of all real numbers) of 
other possibilities since we do not need to achieve a 
full consistency. This makes the convergency problem 
mathematically challenging. 

Given an inconsistent N x N matrix A, the theory at- 
tempts to provide a consistent N x N matrix B that dif- 
fers from A “as little as possible”. One solution to this 
problemwasproposedin[8].Lets=(st,...,sN)be 
the eigenvector of A corresponding to rr, the largest 
eigenvalue of A. By the theorem of Frobenius (T is 
unique, positive and simple. Furthermore, s can be 
chosen to have all coordinates positive. 

Let B = (bij) be given by bij = si/sj for all i, j = 

1. B is consistent and, moreover, s is an eigenvector 
of B (corresponding to eigenvalue u). Sharing this 
eigenvector with matrix A is an argument in favour of 
B being a consistent matrix that resembles A the most. 

The above procedure of finding a consistent matrix 
as a replacement for an arbitrary pc matrix takes ad- 
vantage of the peculiarities of eigenvectors, but the 
geometric-means solution is simpler to compute [ l] 
and equally good [ 31. A standard approach is based 
on the notion of the best approximation with respect 

to a distance function. First, introduce a distance func- 
tion 6 in the space of all objects R$, where J = 
{l,... , N} and R+ is the real half-line of (strictly) 

positive real numbers. Some of the objects are of spe- 
cial interest. In our application they are the consistent 
matrices since they form the subspace of “nice ob- 
jects”. The goal is to establish an algorithm that finds 
a “nice” object B for each object A such that 

&A,B) 6 8(&C) 

for every “nice” object C. Thus, B minimizes the dis- 

tance from A to “nice” objects. 
At least two different distance functions have been 

used in the context of pc research. The straight Eu- 
clidean distance d in R< has appeared in the Least 

Square Method (LSM) [ 9,5]. A different distance S in 
R$ seems to provide a deeper insight. Let A : 72s + 
R3and,uuRg -+ R: be the coordinatewise loga- 
rithmic and exponential mappings for A = (aij), B = 

(bij): 

B = A( A) iff bij = log(aij), 

A=,u(A) iff aij =exp(bij), 
for all i, j. 

Obviously, the functions A and p are inverses. They 
help to linearize the pc algebra by translating the con- 
sistency conditions aij . ajk . ski = 1 in space R{ into 

linear conditions bij + bjk + bki = 0 in linear space RT. 
As a result, the image of the (non-linear) subspace 
of all consistent matrices under mapping A is a linear 
subspace of RN (and the same is true for the image 
of the subspace of all reciprocal matrices). Thus it is 
natural to define distance in R$ as 

S(A’,A”) =d(A(A’),A(A”)), 

where d is the Euclidean distance in RJ. 
Distance S appeared in the Logarithmic Least 

Square Method (LLSM) [5,9]. LLSM solves the 
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approximation problem elegantly. Given pc matrix A, 

let B = /\(A). Then what exists is a unique best ap- 
proximation Z E RJ, such that Z is logarithmically 

consistent (meaning that Y = p(Z) is consistent). 
Indeed, Z is the orthogonal projection of B onto the 
linear space of all logarithmically consistent matrices 

in RJ. This means that Y is the unique best consistent 
approximation of A (with respect to distance 8). 

A different approximation problem has arisen in the 
context of [ 6,2] in which measuring the inconsistency 
of comparisons is based on only three stimuli at a time, 
rather than the whole comparisons matrix. This allows 

us to locate the inconsistency and therefore control it. 
Let A be an inconsistent pc matrix. In the case 

of LSM, LLSM, and the eigenvector methods men- 
tioned above, one tries to achieve the best consistent 
approximation of A, where “best” is meant accord- 
ing to the respective mathematical understanding. In 
practice, the mathematical meaning of “best” as un- 
derstood from the application point of view may vary 
from one application to another. Thus it also seems 
reasonable to take advantage of expert opinions in the 
process of arriving at a consistent matrix. This pro- 
cess may be done interactively. After the initial matrix 

A0 = A is provided by the experts, an auxiliary algo- 

rithm pinpoints the most inconsistent triad (or let us 
say a triple of indices that contribute most to the in- 

consistency of matrix A). This information is crucial 
for making corrections to the coefficients aij, akj, ski. 
Then the new matrix A1 is analyzed again and a new 
triad of aij elements is presented to the experts, and 
so on. This interactive process takes advantage of the 
experts’ knowledge to the fullest. It is attractive, but 
one should worry about its convergence. There is no 
complete mathematical answer to the formulated non- 
mathematical problem involving an expert’s ability to 
judge some characteristics of stimuli. Nevertheless, it 
is important to obtain mathematical indications about 

the plausibility of the interactive algorithm. The next 

section provides a basis for such an inference. 

Remark. The theorems and algorithms presented 
above act in the space of all pc matrices. One can 
easily write these results so that they would act in the 

more restricted space of reciprocal matrices. Indeed, 
that is what we would do when implementing these 
results in the form of computer programs. However, 
for the conceptual presentation it is simpler, more 
elegant, and also more general to deal with the full 
space of pc matrices. 

3. The convergence of consistency approximations 

Let L be a non-empty finite family of linear sub- 

spaces of RN. Let L” be the family of all intersections 
of subfamilies of family L. The separation sep( L) 
of the family L is defined (check Appendix A; ap- 
pendices to this paper can be found at UFU http:// 
www.laurentian.ca.www./math.wkoczkodaj.html) as 
the minimum of separations d( YV’) taken over all 
pairs YV’ E L” such that d( YV’) > 0 - but if 

d( YV’) = 0 for every YV’ E L” then we define 
sep( L) = 0. Note that sep( L) = 0, iff L is ordered 

linearly with respect to C. For this reason, our con- 
siderations about the consistency approximations will 
be trivially true when sep(L) = 0. Let p”(y) be the 
orthogonal projection of point y onto the linear sub- 
space V. The notion of separation sep(L) will help 
us to prove the following result: 

Theorem 1. Let L be a non-empty jinite family of 
the linear subspaces of RN. Let W = n L be the 
intersection of members of L, let x E RN and y = 

PUT(X). Furthermore, let w : { 1,2,. . .} -+ L be a 
sequence such thatfor every V E L equality V = w(n) 
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holds for infinitely many different n = 1,2, . . . . Dejine 

x0 = x and x,, = pwcn) (X,-I ) for every n > 0. Then 
lim,,, x, = y. 

Proof. If sep(L) = 0 then x, = y for all but a finite 
number of n, so our theorem holds. 

Thus from now on we assume sep( L) > 0. Since 
x,-i - x,, is orthogonal to x, - y we obtain [x,-i - 

y~2=~~,_l-~,~2+~~,-y~2foreverynE{1,2,...}. 
Thus, by induction 

1x0 - y12 = 2 Ix+l - &I2 + I&l - Y12 
t=l 

for every n E 1,2,.... It follows that the infinite 

series x:1 1x,--l - xt12 < 1x0 - y12 is convergent 

(summable) . Hence lim,=, Ixt_i - x,1 = 0. For ev- 
ery S > 0 there exists a positive integer n(S) such 
that d(x,-1,x,) < S for every n > A(6). The above 

equalities also show that d( x,,_l , y) > d( x,, y) for 
n = 1,2,... so d(x,,y) > d(x,,y) whenever m < 

n. 
Let m E (0, 1, . . .}. Then there exists an n 3 m 

such that #=, w(t) = W. 
Indeed, there exists an n > m such that ev- 

ery linear space V E L occurs among the lin- 
ear spaces w(m), . . . , w(n) at least once, i.e., 

{w(m),..., w(n)} = L. Fix arbitrary positive inte- 
gers m > 0 and n such that A(S) 6 m < n for some 

arbitrary S > 0 and define This essentially proves the required convergence of 

x, to y. Indeed, given an arbitrary real E > 0 let 

W = n w(k) and yr =PW,(X~ 

k=m 

for t = m, _ . . . 

S = E. sin(w(Lf ) 
2M-1 . 

As in earlier similar considerations, we know that: 

yt = pw, (x,) for t = m, . . . , n 

therefore we need to estimate the distance d (x,, , W,) . 
First, we estimate d( x,, W,) for every t = m, . . . , n. 
Let us also note that d(xm, W,) = d(x,,y,) and 
d(x,, W,) = 0. 

Then for every m > A( 8) there is an n > m such that 
y,, = y (by one of the assumptions of the Theorem 1 
each V E L appears as w(t) for some t = tv > m; 

thus y,, = y for n = maxvGL tv). We can see that: 
d(x,,y) = d(x,,y,) < E for every m > A(8) = 
n(~.sin(sep(bfl))/(2~ - 1)). 0 

Furthermore, let m < t < n. Three cases need to be 
considered: 

4. Algorithms for reducing inconsistency 

Case A: W,_I C w(t). Then W, = Wt-l ; hence Due to its generality, Theorem 1 assures flexibility 

yr = Y+I and d(x,, yt) = d(xm,yt-l 1. in choosing designs of algorithms that approximate the 

Case B: Wt_l > w(t) (“strict” containment). Then limit point y. We will call such algorithms “correct”. 

W, = w(t) ; hence yt = xy and To be more specific, by a correct algorithm we mean a 

d(xmt rt) = d(xm, xt> 
<d(xm,y,-1) +d(y,-1,x,-1) 

+ d(xt-r,xt) 

<2.d(x,,y,-1) +S. 

Case C: d( Wt_l, w( t)) > 0. By applying the pre- 
vious section result (regarding the distance from a 

point to the intersection of two linear subspaces), 

d(x,,yt) 6 d(xmyt-1) + dbt-l,xt-1) 

+ d(xt-l,yt> 

<2.d(xm,yr-1) + 
s 

sin(sep(L)) ’ 

we combine cases B and C into one case BC. 
Case BC: W,_l is not contained in w(t). Then 0 < 

sin(sep(L)) 6 1, so 

d(x,, yt) 6 2. d(x,, yt-1) + 
s 

sin(sep(L))’ 

Let bc( t) = 1 when case BC holds for index t and let 
bc( t) = 0 otherwise. We obtain by induction 

d(x,,yt) < (2C~m+‘bc’k’ - 1) . sin(se;cLj). 
Let M = min( N, IL]) - 1 where IL] denotes the num- 
ber of members of L. Obviously C”,,,, bc( k) < M 

hence d(x,,y,) < (2M - 1) .S/sin(sep(L)). 
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constructive choice of a sequence w : { 1,2, . . .} -+ L 
such that limn_+oo xn = y, where xc = x is the initial 
point and x, = ~,,,(~)(x+i) for every n > 0 (see 
Theorem 1) . 

The easiest way to achieve correctness is by defin- 
ing sequence w as a periodic sequence that exhausts L. 
First, we let w( 1) , . . . , w( 1 L 1) enumerate all members 
of L. We can extend the sequence w indefinitely by the 
recursion: w(n) = w(n- IL/) for every n > IL]. Such 
a sequence w satisfies the assumption of Theorem 1 

about each member of L appearing infinitely many 
times in w( 1)) w(2), . . . . By Theorem 1 we have ob- 
tained a correct algorithm. In practice, other choices 

of sequences w might be more efficient, meaning that 

the corresponding sequence (x,) may converge faster. 
Thus let us provide another option, the greedy algo- 
rithm. 

Assume that w( 1) , . . . , w(n - 1) E L are already 
prescribed (“computed”), so that x0, . . . , x,-i are 
also given: x0 = x and xk = Pw(k) (xk_1) for k = 

1 ,..., n - 1. Then w(n) E L is a greedy choice if: 

d(x,-I 9 w(n) ) = 7:; d(&-I 1 VI 

and, obviously, we let x,, = P,,,(“). The (whole) algo- 
rithm is greedy when all choices are greedy, for n = 
1,2,. . . . 

Theorem 2. The greedy algorithm is correct. 

Proof. Let x E ‘2” and let L be a finite family of 
linearsubspacesofRn.Letw:{1,2,...}-+Lbea 
greedy sequence. Let LO be the family of all V E L 
that occur in sequence w : { 1,2, . . .} infinitely many 
times. Let LY be the first index such that w(n) E Lo 
for every n > a. We may then apply Theorem 1 to 

x I- - xu, LO and to sequence u : { 1,2,. . .} -+ LO 
suchthatv(n)=w(n+cz)foreveryn=1,2,....By 
Theorem 1, lim,,, X; = y’ E Wo, where W. = n Lo 
and xk = x,,+~ for n = 1,2,... and y’ = pw,(x’). 
Let V E L be arbitrary. We will show that y’ E V. 

Otherwise d ( y', V) > 0 and there exists an n such that 
d(x;,y’) < d(x;, V). But d(x;, V’) < d(x;, W,) = 

d( XL, y’) for every V’ E LO, so 

d(x,+,, V) = d(x:, V) 

> peg 4x;, V’> = “?t; d(x,+m V’) 

which is a contradiction. 
Thus we have shown that y’ E V for every V E 

L, i.e., y’ E W = nL. Since W 5 WO we see that 
y’ = y = pw (x) proving the correctness of the greedy 
algorithm. 0 

5. Convergence to consistency 

LetR+={xER:x>O}.LetJ=(1,...,N}2 
for a positive integer N. Then 77,; is the set of all 

N x N pc matrices. Let A : 72: -+ R3 be a mapping 

such that for A = (aij) E R$ and B = (bij) E 

‘R3 we have B = A(A) iff bij = log(aii) for every 
i,j= 1,. . . , N. Obviously A is a bijection (a l-l onto 
mapping) between R$ and Rs. Thus let p : 72” -+ 
‘R$ be the inverse of A. 

Let Lijk = {B E RJ 1 bij + bjk + bki = 0) for 

i,j,k=l,..., N,andlet 

L={Lijk 1 i,j,k,= l,..., N} and ,4=nL. 

A pc matrix A E Rf is consistent iff A(A) E A. 

From now on we call matrices B E A logarithmically 

consistent. Thus A is consistent iff A( A) is logarithmi- 

cally consistent. The following results are immediate 
consequences of Theorems 1 and 2. 

Theorem 3. Let A E R: and B = Bo = A(A). 

Let w : { 1,2,. . .} -+ { 1,. . . , N}3 be such that 
each triple (i, j, k) appears infinitely many times 

in w(l),w(2),.... Finally, let Y = pA (B) and let 

B, = p~,(., (B,_l ) for n = 1,2,. . . . Then sequence 
A,, = ,u(B,) of pc matrices is convergent to the 

consistent matrix X = ,u( Y) , and lim,,, A,, = X. 

Theorem 4. Let A E Rz and B = Bo = A(A). 

Let w : {1,2 ,... } ---f {l,..., N}3 be a se- 
quence of “greedy choices”, meaning that w and 
the sequence of matrices B, such that B, = 

pi,,., ( B,_I ) for every n = 1,2,. . . satisfy the con- 

dition d(B,_l,L,(,)) = maxvELd(B,_l,V) for 
every n = 1,2,.... Furthermore, let Y = PA(B), 
X = p(Y) and A,, = p(B,,) for n = 0, 1, . , . . Then 
X = lim,,, A,, is a consistent matrix. 

Remark. With any of the above algorithms, when 
we pass from B,,_l to B, only three entries of the 
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matrix are modified, corresponding to some pairs of sistency converges. It is quite acceptable from the com- 
indices (i,j), (j, k), (k, i), these indices i,j, k do mon sense point of view: global improvement is usu- 
not have to be different (even the case i = j = k is ally achieved by a number of local improvements. We 
allowed). In the restricted domain of the reciprocal believe that the theory presented has a much broader 
matrices, each modification would involve differ- application to other situations where local/global is- 
ent indices i f j # k # i. Furthermore, together sues occur. This is only the tip of the iceberg that 
with the matrix terms corresponding to the pairs we hope will, in time, contribute to moving atten- 
(i, j) , (j, k) , ( k, i) , we would also modify terms cor- tion from improving inexact data by themselves to a 

responding to (i, k) , (k, j) , (j, i), so that the matrices more constructive approach of stepwise improvement 

are reciprocal for every step. by consistency-driven procedures. 

6. Conclusions 

We are able to find weights for a given pc matrix by 
various methods. The accuracy of such weights does 

not depend strongly on the method (e.g., [ 3]), but 
there are still some intriguing questions: Does the so- 

lution make any sense? Is it of any use? Frequently, 
both questions must be answered ~to because all meth- 

ods for finding weights mentioned in this paper require 

and silently assume a certain degree of consistency 
of judgments, which are often subjective and impre- 
cise. The inconsistency of judgements must be small 
enough for the weights to have any practical meaning; 
therefore controlling inconsistency is instrumental for 

the pc method. 

The triad inconsistency definition provides an op- 
portunity to design an algorithm for reducing the in- 
consistency of the experts’ judgments. It should be 
seen as a technique for data validation in the knowl- 
edge acquisition process. The inconsistency measure 
of a comparisons matrix is the measure of the quality 
of knowledge. 
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