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Abstract. In this study, differential evolution (DE) optimization is proposed for the rating scale predictability improvement.
An arbitrary assignment of equal values for rating scale items is used as the classifier although domain experts are aware that
the contribution of individual items may vary. Most academic examinations are conducted by the use of rating scales. Rating
scales are also used in psychiatry (especially for screening). This study demonstrates that the differential evolution is effective
for optimizing the predictability of rating scales.
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1. Introduction

Rating scales are designed for knowledge aquisition
in order to rate an entity, objects, or concept. Rating
scales are also called assessment scales. In our study,
we use ”the scale” when no ambiguity occurs. Prob-
ably, the most significant and frequently used rating
scales are examinations or tests (e.g., Ontario Driver’s
test with 40 multiple-choice questions). Evidently, the
ramifications of giving a driving license to unqualified
driver are crown example why collective intelligence is
of considerable importance since the test is developed

*Corresponding author. E-mail: wkoczkodaj@cs.laurentian.ca.
**Euro Grant: Human Capital.

by a group of experts to accommodate social needs of
nearly the entire population of the age 16 years and
higher.

Many popular rating scales use values “1 to 10” but
five "stars" are gaining popularity for the online re-
viewing of goods or services. In rating scales, yes/no
answers are also used for answers. The number of
questions (called items in the rating scale terminology)
may drastically differ from scale to scale. Numerous
rating scales have over 100 items to rate but one item
rating scale is also useful for rating the customer’s sat-
isfaction with goods or services. An example of a pop-
ular rating scale is the intelligence quotient (IQ). It is a
total score derived from several standardized tests de-
signed to assess the intelligence of an individual per-

0000-0000/16/$00.00 c© 2016 – IOS Press and the authors. All rights reserved



2

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. Rating scale example.

son. The collective IQ is often used interchangeably
with the term collective intelligence.

Misnomers of the scale is are a survey and a ques-
tionnaire. A questionnaire is a tool for data gathering
and may not be used for rating. A survey may not nec-
essarily be conducted by questionnaires and usually
does not rate anything. Its goal is to gather data without
rating them. Some surveys may be conducted by inter-
views or extracted by Internet agents with or without
our consent or knowledge. The important distinction of
rating scales from questionnaires and surveys, is that
the rating scales are used for assessments. It means that
rating scales are expected to have an outcome making
them classifiers (in the terminology of statistics and
machine learning). The scale term in the rating scale
has the meaning as in “the scale of disaster” hence this
study assumes that:

[ratingscale] = [data f rame] + [assessment]

data f rame] + [assessment] = [classi f ier]

The ’assessment’ procedure must be in place for
a questionnaire or survey to become a rating scale.
The assessment procedure may be as complex as the
imagination of their authors but most psychiatric rat-
ing scales use a simple summation. The simple sum-
mation has been used in the first examples. The sim-
ple summation can be replaced by, for example, the as-
signment of weights. In our example 2, we computed
weights by the differential evolution (using R pack-
agbe DEval). As expected, it has not influenced the re-
duction, but it has improved the predictability rate.

’A picture is worth a thousand words’ therefore Fig.
1 has been used to illustrate ratings scales which are
used in many ratings of various products.

The importance of subjectivity processing was
driven by the idea of bounded rationality, proposed by
Herbert A. Simon (a Nobel Prize winner), as an alter-

native basis for the purely mathematical modeling of
decision making. Objective data are more commonly
used in strict sciences. The deficiency of methods for
processing subjectivity is the main reason why sub-
jectivity is avoided whenever it is possible. However,
objectivity is illusive and there is a fine line between
subjectivity and objectivity in practice. For example,
an item listed for sale for, say 1,000 monetary units,
will be very likely sold for 999 units if such offer is put
forward to us. If so, one may also not resist 998 units
and so on. Setting a limit (so called, “the bottom line”)
is often a highly subjective decision.

To illustrate our goal, let us focus our attention on a
University exam with several parts or problems. Each
part is marked from 0 to 3. There is a good reason for
using small numbers. It is addressed in [7] for pairwise
comparisons. From the psychological point of view,
a smaller marks give smaller losses of imperfect an-
swers. For example, 2.5 of 3 is 0.5 marking point loss,
Evidently, it is 2 when 12 points are used for marking
but 2 of 12 "looks more than 0.5 (that is, "only" half a
point) of 3. Regardless of the maximum mark used for
marking a single problem, we use different multipliers
for more difficult problems than for easier problems.
The multipliers are optimized for passing the maxi-
mum students. Evidently, no optimization is needed to
fail all students.

Rating scales are of considerable importance in psy-
chiatry (see [8, 13]) where the use of medical test (such
as blood or urine) is not helpful in determination of a
mental disorder. Common examples of scales are the
Likert scale and 1-10 rating scales in which a per-
son selects a number reflecting the quality of an entity
(e.g., pain) as he/she perceives it. It is not uncommon
for a rating scale to have over 100 items (questions)
to rate. The primary use of rating scales is screening
but they may be also used for decision making (e.g., a
preliminary diagnosis). We stress that rating scales in-
volves processing of subjective data. It is the absence
of a well-established unit (e.g., one kilogram or meter)
that compels us to use rating scales. A common mis-
take is regarding rating scale as a questionnaire since
not all questionnaires are used for ratings. Statistical
surveys are examples of using questionnaires without
expectation of any rating.Rating scales are of consid-
erable importance in psychiatry (see [8, 13]) where the
use of medical test ( known as biomarkers discussed
in [24, 25] is not helpful in determination of a mental
disorder.
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2. Area Under Curve (AUC) of Receiver Operator
Characteristic (ROC) as the objective function

A standard optimization model is maximizing (or
minimizing) one real-valued function f in the parameter-
space ~x ∈ P , or its specified subset ~x ∈ D where D
denotes the set defined by the constraints. The maxi-
mization of a real-valued function g(x) is equivalent to
the minimization of the function f (x) := −g(x).

In our nonlinear optimization problems, the objec-
tive function f has a large number of local minima and
maxima. In fact, there are sectors (ranges) of values for
one variable with identical values as demonstrated by
Fig. 2. Finding the global maximum of a function is
far more difficult and evolutionary methods are often
used.

Fig. 2. Function with sectors of flatness

In case of a scale, we are optimizing Area Under
Curve of Receiver Operator Characteristic. The ROC
curve is created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various thresh-
old settings. The method was introduced during the
World War II for evaluating the performance of radar
operators. Since 1990s, the use of ROC exploded expo-
nentially reaching approximately 15,000 citations by
Web of Knowledge in 2016 and may be even higher in
2017. The main attraction of ROC is the accommoda-
tion of false positives and false negatives by a binary
classifier. One of the best introductions to ROC curve
constructions is [5] and readers unfamiliar with ROC
are encouraged to get familiar with this source.

Different variations of meta-heuristic methods are
popular for global optimization. In our case, we have
many variables. The problem is that “flatness” may oc-
cur on many variables hence there is really no way of
knowing which to go and every real interval consist of
continuum of values. In case of a section, at the ex-
trema, there are ℵ0 solutions. Moreover, verifying the
“mountain peaks” is impossible for n independent in-
put variables since there are ℵ0 candidate values, even
if we set one input variable, and none of these values
can be excluded from computations.

The most common is two-class prediction problem
(binary classification). In medicine, it comes to "sick"
or "not sick"; "dead" or "alive". In other words, a di-
agnosis is a mapping of observations into two classes.
The diagnosis result can be a real (continuous output)
or integer value, in which case the classifier bound-
ary between classes must be determined by a threshold
value (for instance, to determine whether a person has
major depression) based on a total of a rating scale.

The diagnosis outcomes are labeled either as posi-
tive (P) or negative (N). There are four possible out-
comes from a binary classifier. If the outcome from a
prediction is P and the actual value is also P, then it is
called a true positive (TP). However, if the actual value
is N and the predicted value is P, then it is said to be
a false positive (FP). Similarly, a true negative (TN)
takes place when both the prediction outcome and the
actual value are N. The false negative (FN) is when the
prediction outcome is N while the actual value is P.

Consider a diagnostic test that seeks to determine
whether a patient has a major depression. A false pos-
itive occurs when the patient’s total score of a scale
indicates depression but actually the patient does not
have the depression. A false negative, on the other
hand, occurs when the patient’s total indicates lack of
depression but the patient has the depression.

Let us define an experiment from P positive in-
stances and N negative instances for some condition.
The four outcomes can be formulated in a 2 by 2 con-
tingency table or confusion matrix (CM), as follows:

CM =

[
TP FP
TN FN

]
Sensitivity or true positive rate (TPR) is defined as

TPR = TP/P = TP/(TP + FN).

The specificity or True Negative Rate (TNR) is defined
as

TNR = TN/N = TN/(FP− TN).

As stipulate earlier, [5] has compiled all basic terms
and the above definitions. ROC curve plots the true
positives (sensitivity) vs. false positives (1 specificity),
for a binary classifier as its discrimination threshold
is varied. A receiver operating characteristic (ROC)
is used and evaluate the diagnostic (prognostic) per-
formance of rating scales. The area under the curve
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(AUC) of a receiver operating characteristic (ROC)
curve reduces ROC performance to a single value rep-
resenting the expected performance. AUC is equal to
the probability that a classifier will rank a randomly
chosen positive observation higher than a randomly
chosen negative observation. It measures the classifier
ability for ranking a set of observations according to
the degree to which they belong to the positive class,
but without actually assigning patterns to classes.

The term “receiver operating characteristic” was
used in testing the ability of World War II radar oper-
ators to determine whether a blip on the radar screen
represented an object (signal) or noise. This method,
originally used by the signal detection theory, was later
applied to psychiatry in [6]). The use of AUC as mea-
sure for the qualifier quality is addressed in [22].

Let us denote the probability for belonging in the
positive class as a function of a decision/threshold pa-
rameter Co as p1(Co) and the probability of not be-
longing to the class as p0(Co) . The false positive rate
FPR is given by:

FPR(C) =

∫ ∞

p0(Co)

p0(C) dC.

The true positive rate is defined as:

TPR(C) =

∫ ∞

p1(Co)

p1(C) dC.

The ROC curve plots parameters TPR(C) versus
FPR(C) with C as the varying parameter, see e.g. [5].

2.1. Example

The goal of this example is to present the rating
scale as the classifier defined as the weighted sum of
attributes with weights wi = 1, 1 = 1, 2, . . . 6,. In that
case the formula for this classifier is given by:

S i = w1Vi1+...+w6Vi6 = Vi1+...+Vi6, i = 1, ..., 26.

(1)

In that case it is possible to plot ROC curve and use the
AUC measure of performance across all possible clas-
sification thresholds. We take in advantage an artificial
data set placed in Tab. 1.

We have a class D with values 0 or 1 in the first
column followed by six independent variables Vi, 1 =
1, 2, . . . 6, taking integer values, and their total sum S

in the last column. Evidently, observations 7, 8, and 9
do not belong to class D since they have too high sum.
Similarly, observations from 10 to 17 seem to be in the
wrong class as they have the low total score.

Table 1
Sample data

# D V1 V2 V3 V4 V5 V6 S

1 0 0 0 0 0 0 1 1
2 0 0 1 0 0 0 1 2
3 0 0 1 2 0 0 0 3
4 0 0 0 0 0 0 3 3
5 0 0 1 1 0 1 0 3
6 0 0 2 1 0 0 0 3
7 0 2 2 0 3 2 2 11
8 0 1 3 1 2 2 3 12
9 0 2 3 3 3 0 3 14
10 1 0 0 1 0 1 1 3
11 1 1 0 0 0 1 1 3
12 1 0 0 1 0 0 2 3
13 1 0 1 1 0 1 1 4
14 1 0 2 2 0 0 0 4
15 1 0 1 1 0 1 1 4
16 1 1 2 1 0 0 0 4
17 1 2 2 3 3 1 2 13
18 1 2 0 2 3 3 3 13
19 1 2 3 3 2 2 2 14
20 1 2 2 2 2 3 3 14
21 1 2 2 3 2 2 3 14
22 1 3 3 2 3 1 3 15
23 1 2 3 3 3 1 3 15
24 1 3 3 3 2 2 3 16
25 1 3 2 3 2 3 3 16
26 1 3 3 2 3 3 3 17

In order to plot the ROC curve, we tread the column
D as the known target, the independent variables Vi, as
attributes and the column S as the classifier. The result
is shown in Fig. 3.

The AUC for classifier S is equal AUC = 0.8007,
which means a good accuracy of this classification. In
case of a rating scale, we can say that the predictabil-
ity of this scale is good enough. In the following, we
propose a method of optimization of weights for the S
classifier using the DE algorithm, what is illustrated in
Example 2.

3. A brute force search for better weights

For computing AUC, we use two and only two
columns (vectors) from Table 1. They are D (decision)
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Fig. 3. ROC curve - sum (weights equal to 1)

and S (sum). Adding all independent variables Vi to
get S =

∑6
i=1 Vi makes a silent and often unreason-

able assumption that all variables Vi are of equal con-
tribution to diagnosis (expressed by all weights w are
equal to 1). We know that in practice, it is not true and
computing values w by maximizing AUC is needed.
The optimizing problem may be formulate as follows.

Maximize AUC for a vector D and S =
∑6

i=1 wiVi

by changing wi:

1. Run 10,000,000 the brute force Monte Carlo.
2. Localize "flatness" for each variable (it may have

0, 1 or more).
3. Find the "optimum point" on each flatness.
4. Run the brute force Monte Carlo for plus/minus

10% from the above point (20%?)

It is worth noting that the weights wi are set for the
entire data. In our case, a vector of weights was ran-
domly generated for plus/minus 50% of the given ini-
tial values of 1 and AUC computed for them.

Practical experimentation revealed that the force
brute approach is not acceptable. Even for a moder-
ate number of variables (say 7), there are 710 combina-
tions taking already minutes on a fast Intel computer
to compute AUC for each random vector w. Evidently,
is not statistically acceptable to check only 10 random
values for each variable.

4. A better way of optimizing weights by
Differential Evolution

Differential evolution (DE), introduced in [23] and
recently ued in [19] finds a solution by iterative im-
provement of a candidate solution (e.g., eights) with
regard to a given measure of quality (e.g., AUC value).
It is one of the most powerful meta-heuristics algo-
rithms that operates on the basis of the same develop-
mental process in evolutionary algorithms (EAs). Nev-

ertheless, different from traditional EAs, DE uses the
scaled differences of vectors to produce new candidate
solutions in the population. Hence, no separate prob-
ability distribution should be used to perturb the pop-
ulation members [3]. The DE is also characterized by
the advantages of having few parameters and ease of
implementation. The application of DE on engineering
[1] and biomedical [2] studies has attracted a high level
of interest, concerning its potential.

Basically, the DE algorithm works through a par-
ticular sequence of stages. First, it create an ini-
tial population that sampled uniformly at random
within the search bounds. Thereafter, three compo-
nents namely mutation, crossover and selection are
adopted to evolve the initial population. The mutation
and crossover are used to create new solutions, while
selection determines the solutions that will breed a new
generation. The algorithm remains inside a loop until
stopping criteria are met. In the following, we explain
each stage separately in a more detail.

4.1. Initialization

Like other optimization algorithms, DE starts with a
randomly initialized population of order NP consisting
of parameter vectors the so-called individuals. Each
such individual represents a D-dimensional vector of
decision variables. The ith individual of the population
at generation G could be denoted as follows:

−→
X G,i = [xGi, j ] = [xG

i,1, . . . , x
G
i,D], (2)

where j = 1 . . . ,D and i = 1, . . . ,NP.

For each individual of the population, both upper
and lower bounds of the decision variables should be
restricted to their minimum and maximum values

min
−→
X G,i = [min xG

i j] = [min xG
i,1, . . . ,min xG

i,D],

max
−→
X G,i = [max xG

i j] = [max xG
i,1, . . . ,max xG

i,D]

Once initialization search ranges have been deter-
mined, DE assigns (at G=0) each individual a value
from within the specified range as follows [23], for
G = 0,

x0i, j = min x0i, j − r(max
−→
X 0,i −min

−→
X 0,i), (3)

where r ∈ [0, 1] represents a uniformly distributed ran-
dom number and NP the population size.
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4.2. Mutation

After initialization, mutation operator produces new
solutions by forming a mutant vector (trial vector) with
respect to each parent individual (target vector). For
each target vector, its corresponding trial vector can be
generated by different mutation strategies. Each strat-
egy employs different approaches to make a balance
between the exploration and exploitation tendencies.
For ith target vector at the G generation the five most
well-known mutation strategies are presented as fol-
lows [18]. Here r1, r2, r3, r4, r5 ∈ NP are five differ-
ent randomly generated integer numbers. Furthermore,
F is a scaling factor ∈ [0, 2] affecting the difference
vector and best ∈ NP is an index of the best individual
vector at generation G.

(1) DE/rand/1

−→
V G,i =

−→
X G,r1 + F(

−→
X G,r2 −

−→
X G,r3), (4)

(2) DE/best/1

−→
V G,i =

−→
X G,best + F(

−→
X G,r1 −

−→
X G,r2), (5)

(3) DE/rand-to-best/1

−→
V G,i =

−→
X G,i + F(

−→
X G,best −

−→
X G,i)+

+F(
−→
X G,r1 −

−→
X G,r2), (6)

(4) DE/best/2

−→
V G,i =

−→
X G,best + F(

−→
X G,r1 −

−→
X G,r2)+

+F(
−→
X G,r3 −

−→
X G,r4), (7)

(5) DE/rand/2

−→
V G,i =

−→
X G,r1 + F(

−→
X G,r2 −

−→
X G,r3)+

+F(
−→
X G,r4 −

−→
X G,r5). (8)

4.3. Crossover

In this step, DE applies a discrete crossover ap-
proach to each pair of the parent vector and its corre-
sponding trial vector. The basic version of DE incor-
porates the binomial crossover defined as follows [23]:

UG,i, j =

{
VG,i, j if (rand j[0, 1) 6 CR) or ( j = jrand)

XG,i, j otherwise,

where, CR is the user-specified crossover rate which
determines the probability of mixing between parent
and trial vectors. Also, rand j ∈ [0,D] is a randomly
picked integer number.

4.4. Selection

In this step, DE adopts a selection mechanism to
choose the best individuals according to their fitness
for producing the next generation of population. To-
ward this goal, it compares performance of the trial
and target vectors and copies the better one into next
generation; as presented above.

−→
U G+1,i =

{−→
U G,i if f (

−→
U G,i) 6 f (

−→
X G,i)−→

X G,i otherwise,
(9)

where, f is the objective function that should be opti-
mized. To sum up, a detailed pseudo code of the afore-
mentioned DE steps is presented in Figure 4.

Sliders are used for data collection by the Internet.
Domain experts know the range for each variables and
may be guided by results of the data analysis. The
growing/decreasing tendency is what usually is needed
to make a decision if a variable could be set to a certain
value. In the past, integers were used for weights only
because it was easier to do the calculations. There is
no longer such reason and real values can be collected
by a slider instead of a classic paper version of the Lik-
ert scale [16], The Internet version of it is the use of a
slider represented by Fig. 1.

4.5. Example

This example illustrated optimizing the predictabil-
ity of rating scales shown in Example 2.1 by optimiz-
ing the weights of the classifier S 1. The objective
function is taken as the AUC(w1, ...,w6) measure of
performance. In determine the optimum of the objec-



7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 4. Pseudo-code of the DE algorithm

tive function we use the DE algorithm shown in Fig 4
with the number of iteration as 200. The optimization
are carried out with the package optimDE of the R pro-
gram. Table 2 presents the results of the optimization,
it is maxAUC and corresponding weight.

Table 2
Results of DE optimization for artificial data

weight.opt

wDE
1 0.91

wDE
2 1.33

wDE
3 2.75

wDE
4 2.42

wDE
5 2.93

wDE
6 2.72

max AUC 0.863

In Fig. 5 we plot following graphs (from left hand
side):

– ROC curve for classifier S with weights wDE
i ,

1 = 1, 2, . . . 6, - the rating scale predictability
measures by AUC is 0.863

– ROC curve for classifier S with weights wi = 1,
1 = 1, 2, . . . 6, - the rating scale predictability
measures by AUC is 0.8

– comparison of two ROC curves

Fig. 5. ROC curves - comparison

The comparison plot clearly shows the higher area
under ROC curve for classifier S with weights wDE

i ,
1 = 1, 2, . . . 6.

5. Dataset examples

An example has been used to demonstrate how to
find the optimal weights for a given rating scale which
was used for the Somerville Happiness Survey in 2015.
The data are real (posted on the Internet pro publico
bono [10]). The DE optimization is carried out using
R package DEoptim (see [20]).

Table 3
Results of DE optimization for SHS data

weight.opt

wDE
1 1.15

wDE
2 1.59

wDE
3 1.14

wDE
4 2.20

wDE
5 0.42

wDE
6 1.22

max AUC DE 0.704

AUC sum 0.679

Fig. 6 has been used to illustrate ROC curves for
both classifier separately and comparison plot.

Differential evolution was used with 200 iterations.
The weights with max AUC are in Table 3. The lower
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Fig. 6. ROC curves - comparison for SHS data

and upper bound decide are the search space of param-
eters. In our case, the lower bound is 0.1 and upper
bound is 3.

6. Conclusions

The presented method is self-contained. However,
it works well with [11] based on [12] and can be fur-
ther improved by the pairwise comparisons (PCs). The
proof o the PCs method convergence was provided in
[9] and its statistical accuracy enhancement was ana-
lyzed in [14]. It has been implemented in R. However,
it may be perceived a second step of the rating scale
design process. The first step is the rating scale reduc-
tion described in [15] where a scale o 21 items was re-
duced to 6 items without the loss of predictability. The
item reduction is not only an essential saving for (of-
ten expensive) data collection but also a contributor to
the data collection error reduction. The more data are
collected, the more errors are expected in them.
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