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Abstract This study presents empirical evidence of the fast convergence of the
distance-based inconsistency for pairwise comparisons. It is a follow up of the the-
oretical proof of the inconsistency convergence. The convergence has been proven
by the functional analysis method. As most mathematical proofs, computing the
number of iterations has not even been considered. Our empirical research shows
that the algorithm converges a fast rate.
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knowledge management

1 Introduction

Strict sciences have put more emphasis on processing quantitative (or objective)
data than qualitative (subjective) data, which we use more frequently in daily
life. However, empirical software engineering often deals with subjective attributes
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and evaluations such as software quality or safety. The importance of subjectivity
processing is expressed by the idea of bounded rationality, proposed by Herbert A.
Simon, as an alternative basis for the mathematical modeling of decision making.

Objective data are used more frequently because of the lack of proper methods
for processing subjectivity. However, objectivity is often illusive since there is a
fine line between objectivity and subjectivity more often than we realize it. For
example, when hiring a software engineer, we lack “a yardstick” to measure his/her
real software development ability. We compare him/her against other candidates.

Pairwise comparisons allow us to express preferences more easily. These pref-
erences can be highly subjective (e.g., likes/dislikes). Pairwise comparisons were
most likely used even before numbers were invented. We can easily envision that
“weighting” took place during the Stone Age to decide if a fish, in one hand, can
be bartered for a bird in another hand. Ramon Llull was given credit for discov-
ering the Borda count and Condorcet criterion (Llull winner) in the 13th century
after the discovery of his lost manuscripts Ars notandi, Ars eleccionis, and Alia
ars eleccionis, in 2001. However, Condorcet published his voting method based
on pairwise comparisons in 1785 in [2] and it is generally assumed to be the first
documented use of this method. The next formal use of pairwise comparisons is
traced to Fechner in 1860 (see [3]). More recently, pairwise comparisons method
was used in [11]. In this journal, pairwise comparisons were applied to software
engineering problems in [6, 7] but in a bit different (statistical) way.

It is worth stressing the binary nature of pairwise comparisons. Similarly to
binary numbers, pairwise compassions are practically irreducible since comparisons
one object with itself is not really creative. Empirical software engineering often
relies on pairwise comparisons (e.g., the bubble sort) without realizing of their use.
In fact, every Ω < condition > then . . . else . . . construct is a pair of
actions to be selected on the basis of the < condtion >.

The distance-based inconsistency was introduced in [8]. It was independently
analyzed in [1] by practical experimentations. The above publication also stressed
that only the distance-based inconsistency is localizing the inconsistencies. In [9], a
mathematical (existential) proof of convergence has been provided for the distance-
based inconsistency. No empirical study has ever been done and this is the first
publication showing how rapid this convergence is in practice.

In software engineering, the consistency concept is particularity important in
the design of user interface (often accounting for 50% of all software development
costs). Protecting the consistency of databases is one of the main tasks for DBMS.

In [10], the inconsistency axiomatization is proposed. Sometimes, an inconsis-
tency indicator is called a “measure” but it does not have all properties required
for a measure defined in mathematical sense. So, the measure is used in the way
software engineering uses it.

2 The inconsistency reduction

A distance-based adjective has been used by other researchers for the new incon-
sistency defined in 1993 in [8]. The distance-based adjective reflects the nature
of the inconsistency indicator, which is defined as a minimal distance from the
nearest consistent triad in matrix A. Matrix A is defined as:
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A =


1 a12 · · · a1n
1
a12

1 · · · a2n
...

...
...

...
1
a1n

1
a2n
· · · 1


In data and knowledge processing, the importance of inconsistency analysis is

expressed by the popular adage GIGO (garbage in – garbage out). GIGO summa-
rizes well what has been known for a long time: processing “dirty data” cannot
guarantee meaningful results. The distance-based inconsistency localizes the most
inconsistent triad (or triads). It is the maximum of all triads aik, akj , aij of ele-
ments of A (say, with all indexes i,j,k distinct) of their inconsistency indicators,
which in turn are defined as:

ii = min(|1− aij
aikakj

|, |1− aikakj
aij

|) . (1)

It has been recently simplified to:

ii = 1−min(
aij

aikakj
,
aikakj
aij

) . (2)

The process of reducing global inconsistency of a pairwise comparisons ma-
trix (PC matrix), is based on the detection of triads (say, {aik, akj , aij}) with the
maximal inconsistency. When such a triad is located, we modify the value of aik,
akj or aij in order to make the replaced triad fully consistent. This method was
described in [9] and mathematically proven to be convergent when the most incon-
sistent triad is replaced by the closest triad, according to the Euclidean distance.
A mathematical proof was provided that such a process leads to a fully consistent
matrix but its rate of convergence has never been examined.

2.1 The distance-based inconsistency reduction algorithm

In practice, we change only one value in a triad. Depending on the application, it
may take days or even weeks to call an expert panel, gather data, analyze it, and
make a decision about which value is better. Inconsistency analysis allows us to
locate the most inconsistent triad. However, in our experimentation, we modify
all three values: aik, akj , and aij . This is done by splitting the total modification
to three elements of a triad by minimizing the affect of the modification on the
initial PC matrix. Let us assume that the most inconsistent triad is {aik, akj , aij}.
According to equation (1):

I3 = min|1− aik∗akj

aij
, 1− aij

aik∗akj
|

The name I3 has been selected to denote the triad (hence 3) inconsistency (I).
To make this triad consistent (I3 = 0), three variables (let us say ∆ik,∆kj ,∆ij)
are added to each entry in this triad. The following equation can be obtained when
∆ik,∆kj ,∆ij meet above requirements:

if aik ∗ akj < aij

(aik +∆ik) ∗ (akj +∆kj) = (aij −∆ij) (3)
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where numbers ∆ik,∆kj ,∆ijare positive.

if aik ∗ akj > aij

(aik −∆ik) ∗ (akj −∆kj) = (aij +∆ij) (4)

where numbers ∆ik,∆kj ,∆ijare positive.

By assigning three values to ∆ik,∆kj and ∆ij respectively, the triad will be
fully consistent. In order to keep ∆ik,∆kj and ∆ij relatively small for aik, akj
and aij , we assign values to ∆ik,∆kj and ∆ij according to their relative weights
among aik, akj and aij .

Hence, we can come to the following:

∆ik =
aikc

aik + akj + aij
,∆kj =

akjc

aik + akj + aij
,∆ij =

aijc

aik + akj + aij
(5)

where c is a constant.
Combining equation (3) and equation (5), we can get another equation:
for aik ∗ akj < aij :

(
aik ∗ akj

(aij + aik + akj)2
)c2 +

aij + 2 ∗ aik ∗ akj
aij + aik + akj

c+ aik ∗ akj − aij = 0 (6)

for aik ∗ akj > aij :

(
aik ∗ akj

(aij + aik + akj)2
)c2 − aij + 2 ∗ aik ∗ akj

aij + aik + akj
c+ aik ∗ akj − aij = 0, (7)

which are quadratic polynomials.
Recall, that for a polynomial

P (x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

its n roots x1, . . . , xn satisfy the so-called Vieta’s formulas∑
1≤i1<i2<...<ik≤n

xi1xi2 · . . . · xik = (−1)k
an−k
an

. (8)

By solving equations (6) and (7), c can be obtained and then all ∆ik,∆kj ,∆ij
can be determined. The discriminant for both equations is the same and is equal
to:

(aij + 2aik ∗ akj)2

(aij + aik + akj)2
− 4

(aik ∗ akj − aij) ∗ aik ∗ akj
(aij + aik + akj)2

=

=
a2ij + 8aij ∗ aik ∗ akj

(aij + aik + akj)2
> 0,

and it implies that both equations have exactly two solutions c1 and c2.
Furthermore, when aik ∗akj < aij , from the formulas (8), the roots of equation

(6) satisfy

c1 ∗ c2 =
(aik ∗ akj − aij) ∗ (aij + aik + akj)

2

aik ∗ akj
< 0,
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which implies that only one of them is positive. In this case, we take the positive
root as the solution. If we selected the negative solution, both aik + ∆ik and
akj +∆kj would be negative.

When aik ∗ akj > aij the product of roots of equation (7) is given by the same
formula, so it is positive. At the same time, again from the formulas (8),

c1 + c2 =
(aij + 2 ∗ aik ∗ akj) ∗ (aij + aik + akj)

aik ∗ akj
> 0,

which implies that both of them are positive. In this case we take the smaller value
as the answer to this triad. If we took the bigger one, aik − ∆ik and akj − ∆kj
would be negative.

The full proof of convergence, based on the functional analysis, was provided
in [9]. To show it more explicitly, let us consider instead each matrix

A =


1 a12 · · · a1n
1
a12

1 · · · a2n
...

...
...

...
1
a1n

1
a2n
· · · 1


the skew symmetric matrix

logA =


0 log a12 · · · log a1n

− log a12 0 · · · log a2n
...

...
...

...
− log a1n − log a2n · · · 0


Denote by M(aik, akj , aij) the set of logarithms of all matrices which are con-

sistent with respect to a given triad aik, akj , aij . It follows from formula (2) that
M(aik, akj , aij) is a linear subspace of the space of all skew symmetric matrices.
Moreover, the intersection of all such subspaces is equal to the subspace of all skew
symmetric matrices which are logarithms of consistent matrices.

Consider an algorithm which is, for a given triad aik, akj , aij , an orthogonal
projection of logA onto M(aik, akj , aij) with respect to some inner product. Such
algorithm applied sequentially to a sequence of triads is convergent. as stated in [5]
where the proof was incomplete. A complete proof was finally provided in [9]. The
choice of an inner product is not important since Theorem 1 in [9] is general
enough. Unfortunately, Theorem 1 does not provide any analytical estimation of
the number of steps required for the convergence, Monte Carlo simulation is needed
for its effectiveness.

Our computations clearly indicate that the convergence takes place in fewer
steps than we have anticipated it. As such, it is “good enough” (also known as
“satisfying”) for practical applications of pairwise comparisons. As opposed to
optimal decisions, satisfying, a portmanteau of satisfy and suffice, is a decision-
making strategy that attempts to meet an acceptability threshold. In our case,
this threshold for inconsistency has been assumed (as a heuristic) to be 1/3. It
is worth noticing that “a satisfying strategy” may often be (near) optimal if the
costs of the decision-making process itself are considered as a part of the objective
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function. By “costs”, we understand not the financial problem but “other aspects”
related to solving our decision problem. It may vary from obtaining the complete
information (usually, an impossible task) to assess the impact of our decision on
“public safety” or “public acceptance”.

2.2 An example of the weight-based method for the inconsistency reduction

Let us assume we have a triad {4.2, 0.7, 1.8}. This triad is inconsistent since
4.2∗0.7 = 2.94 > 1.8. but aij = 2.94 makes this triad consistent. However, this
may cause bigger changes in other triads. After all, the change of aij from 1.8
to 2.94 is a relatively significant change (nearly doubled). An improvement is ex-
pected by finding the corresponding variables ∆ik,∆kj ,∆ij from this equation:
(4.2−∆ik) ∗ (0.7−∆kj) = (1.8 +∆ij)

Let us verify that values of ∆ik,∆kj ,∆ij are not significantly affecting another
triad (or triads). According to equation (5), we get:

∆ik = c ∗ 4.2/(4.2 + 0.7 + 1.8) = 4.2c/6.7 = 0.63c
∆kj = c ∗ 0.7/(4.2 + 0.7 + 1.8) = 0.7c/6.7 = 0.104c
∆ij = c ∗ 1.8/(4.2 + 0.7 + 1.8) = 1.8c/6.7 = 0.27c

By solving this equation:

(4.2− 0.63c) ∗ (0.7− 0.104c) = (1.8 + 0.27c)

we get c1 = 16.44, c2 = 1.059.

According to the earlier discussion, we take c2 as our solution. Therefore, we have:

∆ik = 0.67

∆kj = 0.11

∆ij = 0.28

hence:

aik = 4.2− 0.67 = 3.53

akj = 0.7− 0.11 = 0.59

aij = 1.8 + 0.28 = 2.08

and the new triad is {3.53, 0.59, 2.08}.
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2.3 Approximation of pairwise comparison matrices

The consistent matrices are of special interest since they are generated by a vector
of weights. For each given PC matrix A, our algorithm finds a consistent PC matrix
B such that:

δ(A,B) ≤ δ(A,C)

for every consistent PC matrix C. This means that B minimizes the distance δ
from A to consistent PC matrices.

Let λ : RJ+ −→ R
J and µ : RJ −→ RJ+ be the coordinatewise logarithmic

and exponential mappings for A = (aij), B = (bij):

B = λ(A) iff bij = log(aij) for every i, j = 1, . . . , N

A = µ(A) iff aij = exp(bij) for every i, j = 1, . . . , N

Obviously, the functions λ and µ are the inverse of each other. They linearize
the pairwise comparison mathematics by translating the consistency conditions
aij ·ajk ·aki = 1 in space RJ+ into linear conditions bij + bjk+ bki = 0 in the linear

space RJ . As a result, the image of the (non-linear) subspace of all consistent
matrices under mapping λ is a linear subspace of RN (and the same is true for
the image of the subspace of all reciprocal matrices). Thus it is natural to define
distance in RJ+ as follows:

δ(A′, A′′) = d(λ(A′), λ(A′′))

where d is the Euclidean distance in RJ .
The distance δ has appeared in the Logarithmic Least Square Method (LLSM).

LLSM solves the approximation problem elegantly. Given an arbitrary N × N
pairwise comparison matrix A, let B = λ(A), the best (and unique) approximation
Z ∈ RJ exists such that Z is logarithmically consistent (meaning that Y = µ(Z)
is consistent). Indeed, Z is the orthogonal projection of B onto the linear space of
all logarithmically consistent matrices in RJ . This means that Y is not only the
best but also unique consistent approximation of A (with respect to distance δ, of
course).

In practice, the mathematical meaning of “best” is understood from the ap-
plication point of view. It may vary from one application to another and it seems
reasonable to take advantage of expert opinions in the process of arriving at a
consistent matrix.

2.4 The Convergence of Consistency Approximations

Let L be a non empty finite family of linear subspaces of RN . Let L∩ be the family
of all intersections of subfamilies of family L. If U, V are linear subspaces of RN ,
neither of which is contained in the other, we define their separation σ(U, V ) as
the smallest non-zero principal angle between U and V . In other words, σ(U, V )
is the smallest angle between non-zero vectors u ∈ U and v ∈ V , both of which
are orthogonal to U ∩ V . By compactness, σ(U, V ) is always strictly positive. If
U ⊆ V or U ⊆ V , we set σ(U, V ) = π/2. The separation sep(L) of the family L
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is defined as the minimum of separations d(V, V ′) taken over all pairs V, V ′ ∈ L∩

such that d(V, V ′) > 0 – but if d(V, V ′) = π
2 (i.e. V ⊆ V ′ or V ′ ⊆ V ) for every

V, V ′ ∈ L∩ then we define sep(L) = 0. Note that sep(L) = 0, if and only if
L is ordered linearly with respect to the inclusion relation ⊆. For this reason,
the consistency approximation is trivially true for sep(L) = 0. Let pV (y) be the
orthogonal projection of point y onto the linear subspace V , for every y ∈ RN and
for every linear subspace V of RN .

In [5], the notion of separation sep(L) resulted in proving the following Theo-
rem 1.

Theorem 1 Let L be a non empty finite family of the linear subspaces of RN .
Let W =

⋂
L be the intersection of members of L, let x ∈ RN and y = pW (x).

Furthermore, let w : {1, 2, . . .} −→ L be a sequence such that for every V ∈ L
equality V = w(n) holds for infinitely many different n = 1, 2, . . .. Define x0 = x
and xn = pw(n)(xn−1) for every n > 0. Then limn=∞ xn = y.

Our computing experimentation demonstrates that the weight-based incon-
sistency reduction algorithm can efficiently reduce the global inconsistency of a
“Not-so-inconsistent” (NSI) PC matrix to a certain threshold value (1/3 is usually
considered as the acceptable inconsistent level for most applications). The initial
PC matrix is not expected to be fully consistent. Solving real-life problems usually
involves inconsistent assessments. However, a matrix with large inconsistency is
undesirable according to “garbage in, garbage out (GIGO)” principle. Inconsisten-
cies often reflect assessing “every criterion being more important than another”.

The concept of an NSI PC matrix was introduced in [4] by the first author of
this study. Monte Carlo experiments in [4] demonstrated (on the basis of 1,000,000
cases) no statistical difference between the geometric means and eigenvalue meth-
ods of computing weights. A randomly selected deviation was applied to elements
of a fully consistent matrix rendering it inconsistent. The same method is also
used in this study. For an inconsistency to occur, a minimum size of 3 for PC
matrix is required since at least one triad needs to exits. Needless to say that for
two comparisons, inaccuracy (not inconsistency) takes place. We use n = 7 as the
maximal PC matrix size. For a matrix with n elements, there are n∗(n − 1)/2
comparisons. It gives us 21 comparisons for n = 7 and it is a psychological limit
for most respondents to cooperate (we wonder who would agree to compare 100
objects giving 4950 pair combinations?) Fig. 1 shows all the existing triads for
n = 7. Nodes in the graph in Fig. 1 are indexes of triad elements.

3 The relationship of deviation and maximal inconsistency

We produce not-so-inconsistent (NSI) PC matrices by using a random deviation
∆ > 0. For ∆ = 0, the PC matrix, generated from a random vector with positive
coordinates, is fully consistent. By increasing ∆, the inconsistency of the PC ma-
trix is also expected to increase. In order to examine the relationship between ∆
and maximal inconsistency, we follow this algorithm:
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Fig. 1 All triads existing in a 7 by 7 PC matrix

1. Generate random PC matrices,
2. Adjust the deviation of each matrix from 0 to 0.5 with increasing 0.0005 each

iteration,
3. Record the maximal inconsistency of 1,000 matrices for each deviation,
4. Compute the average maximal inconsistency of 1,000 matrices for each devia-

tion.

The NSI PC matrix is obtained by:
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1. Randomize a vector (say V[*])
2. Generate the fully consistent PC matrix (say A) by aij = vi/vj .

Fig. 2 shows the histogram of inconsistency in a NSI PC matrix generated
by adding random generated deviation from 0 to 0.5. Evidently, it is a normal
distribution as was expected.

Fig. 2 Histogram of Inconsistency

Fig. 3 shows the result of the relation between deviation and inconsistency:

As we can see from Fig. 3, the maximal inconsistency increases with the devia-
tion. It is nearly linear (but not quite) dependency for 1,000 generated NSI PC
matrices. The maximal inconsistency is still below 0.7, since the deviation was not
significantly high (between 0 and 0.5)

4 The weight-based inconsistency reduction

In order to test the convergence of weight-based method of the inconsistency re-
duction, we:
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Fig. 3 Dependence of maximal inconsistency and the element deviation

1. Generate random 7 by 7 NSI PC matrices as described above.
2. Add a deviation of 0.5 on each entry in the upper PC matrix triangle.
3. Record the maximal inconsistency of each PC matrix.
4. Count the number of triads with the inconsistency larger than 1/3.
5. Count iterations needed to reduce the maximal inconsistency to a maximal

value of 1/3.

Fig. 4 shows the histogram of numbers of iterations needed to reduce the
inconsistency to equal or less than 1/3: Fig. 4 shows the histogram of the number
of iterations needed for the inconsistency reduction to reach the acceptable level
of 1/3 after 4, 5, 6, or 7 iterations. To analyze the data in details, we compute the
average number of iterations for maximal inconsistency for each NSI PC matrix.
The relationship between maximal inconsistency and average numbers of iterations
is shown by Fig. 5. It is encouraging to see that not more than seven iterations are
needed. Fig. 5 shows the number of iterations needed to bring the inconsistency
under the required level of acceptance 1/3. The number of iterations actually
depends more on the number of triads with an inconsistency larger than 1/3 than
on one triad with a high inconsistency.

Fig. 6 shows the relation between the number of iterations needed to bring the
inconsistency under the required level of acceptance 1/3 for the given number of
inconsistent triads.
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Fig. 4 Histogram showing the numbers of iterations needed to reduce the inconsistency to
not more than 1/3

Fig. 6 shows that the number of triads with large inconsistency affects the
number of iterations needed to reduce the inconsistency to the acceptable level
1/3.

5 Conclusions

We have generated 1,000 NSI PC matrices with ranks ranging from 4 by 4 to 7 by
7. The convergence rate was rapid. Bringing matrices to an inconsistency below
1/3 takes place usually in no more than 10 steps for the worst randomly generated
case. The inconsistency problem in pairwise comparisons is the most fundamental
problem. Intensive literature searches strongly support that computing the exact
number of iterations needed for the inconsistency reduction to the acceptable level
has not been done yet.
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Fig. 5 The number of iterations needed to bring the maximal inconsistency of the PC matrix
under 1/3
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