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Abstract

This study examines the notion of inconsistency in pairwise com-

parisons for providing an axiomatization for it. It also proposes two

inconsistency indicators for pairwise comparisons. The primary mo-

tivation for the inconsistency reduction is expressed by a computer

industry concept “garbage in, garbage out”. The quality of the out-

put depends on the quality of the input.
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1 Introduction

The method of pairwise comparisons (PC method here) is attributed to Fech-
ner (see [5]) as a formal scientific method although it was first mentioned by
Condorcet in [4] who only used it in its primitive form: win/loss. However,
Thurstone (see [20]) proposed what is known as “The Law of Comparative
Judgments” in 1927. In 1977, Saaty proposed what is known as the Analytic
Hierarchy Process (AHP) method based on modified pairwise comparisons
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with a hierarchy structure in [17]. In this study, however, the hierarchy is
not considered.

Saaty’s study [17] had a profound impact on the pairwise comparisons
research. However, his AHP should not be equalized with pairwise compar-
isons, despite using them. The restrictions assumed by Saaty (e.g., fixed
scale: 1 to 9) probably serves its proponent well for whatever purpose he has
designed it. AHP is a subset of the pairwise comparisons method which does
not assume any particular scale. A proof was provided in [6] that a small
scale (1 to 3) has desired mathematical properties for the use in pairwise
comparisons.

It is also worth to note that this study considers only the multiplicative
PC which is based on “how many times?”, while the additive version of
pairwise comparisons (“by how much...”)was recently analyzed in [22]. It
has a different type of inconsistency (not addressed here).

Recently, the study [16] presents an innovate iterative heuristic rating
estimation algorithm that tries to deal with the situation when exact estima-
tions for some concepts (stimulus) CK are a priori known and fixed, whilst
the estimates for the others (unknown concepts CU) need to be computed.
The relationship between the local estimation error, understood as the aver-
age absolute error E(c) over all direct estimates for the concept c ∈ CU and
the pairwise comparisons matrix inconsistency index is shown.

Regretfully, pairwise comparisons theory is not as popular as in mathe-
matics, for example, partial differential equations, hence basic concepts need
to be presented in the next section but it is not PC method experts.

2 Pairwise comparisons basics

An N ×N pairwise comparison matrix simply is a square matrix M = [mij ]
such that mij > 0 for every i, j = 1, . . . , n. A pairwise comparison matrix M
is called reciprocal if mij = 1

mji
for every i, j = 1, . . . , n (then automatically

mii = 1 for every i = 1, . . . , n). Let us assume that:

M =











1 m12 · · · m1n
1

m12
1 · · · m2n

...
...

...
...

1

m1n

1

m2n
· · · 1
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where mij expresses a relative preference of entity (or stimuli) si over sj.
A pairwise comparison matrix M is called consistent (or transitive) if

mij ∗mjk = mik

for every i, j, k = 1, 2, . . . , n.

We will refer to it as a “consistency condition”. While every consistent
matrix is reciprocal, the converse is false in general. If the consistency con-
dition does not hold, the matrix is inconsistent (or intransitive).

Consistent matrices correspond to the ideal situation in which there are
the exact values s1, . . . , sn for the stimuli. The quotients mij = si/sj then
form a consistent matrix. The vector s = [s1, . . . sn] is unique up to a multi-
plicative constant. The challenge of the pairwise comparisons method comes
from the lack of consistency of the pairwise comparisons matrices which arise
in practice (while as a rule, all the pairwise comparisons matrices are recipro-
cal). Given an n×n matrix M , which is not consistent, the theory attempts
to provide a consistent n × n matrix M ′ which differs from matrix M “as
little as possible”.

The matrix: M = si/sj is consistent for all (even random) values vi. It
is an important observation since it implies that a problem of approximation
is really a problem of a norm selection and the distance minimization. For
the Euclidean norm, the vector of geometric means (equal to the principal
eigenvector for the transitive matrix) is the one which generates it. Needless
to say that only optimization methods can approximate the given matrix for
the assumed norm (e.g., LSM for the Euclidean distance, as recently proposed
in [8]). Such type of matrix is examined in [19] as “error-free” matrix.

It is unfortunate that the singular form “comparison” is sometimes used
considering that a minimum of three comparisons are needed for the method
to have a practical meaning. Comparing two entities (stimuli or properties)
in pairs is irreducible, since having one entity compared with itself gives
trivially 1. Comparing only two entities (2 × 2 PC matrix) does not involve
inconsistency. Entities and/or their properties are often called stimuli in the
PC research but are rarely used in applications.
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3 The pairwise comparisons inconsistency no-

tion

The study [17] includes: “We may assume that when the inconsistency in-
dicator shows the perturbations from consistency are large and hence the
result is unreliable, the information available cannot be used to derive a
reliable answer.”

The above quotation is consistent with the popular computer adage GIGO
(garbage in – garbage out). GIGO summarizes what has been known for a
long time: getting good results from “dirty data” is unrealistic, and surely,
cannot be guaranteed. An approximation of a pairwise comparisons matrix
is meaningful if the inconsistency is acceptable. It can be done by localizing
the inconsistency and reducing it to a certain predefined threshold. For the
time being, the inconsistency threshold is arbitrary or set by a heuristic, since
there is no theory to find it. It is a similar situation to p-value in statistics –
often assumed as 0.05 (or any other arbitrary value), but can be undermined
for each individual case.

As pointed out earlier, given an inconsistent matrix M , the theory at-
tempts to approximate it with a consistent matrix M ′ that differs from ma-
trix M “as little as possible”. The consistency of a matrix A, expressed by
mij ∗mjk = mik, was called in [17] a “cardinal consistency”. In this study, a
term “triad” is used for (mij , mik, mjk) (these three matrix elements in the
above cardinal consistency condition).

Before progressing to a formal inconsistency definition, the most impor-
tant question needs to be addressed: “where does the inconsistency come

from?” The short answer to this question is from the excess of input data.
The superfluous data comes from collecting data for all pairs combinations
which is n∗ (n−1)/2, while only n−1 proper comparisons (e.g., the first row
or column and even diagonals or some of their combinations) would suffice.
The inconsistency in a triad is illustrated by the following example.
Example:
This is an inconsistent matrix M , 3 × 3 with one triad (2, 2, 2), which is
marked by the bold font, is:

A =





1 2 2
1/2 1 2
1/2 1/2 1
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Evidently, matrix A displays an abnormality since 2 ∗ 2 6= 2. The computed
vector of weight (si mentioned earlier in this section)is:

s = [0.4934, 0.3108, 0.1958]

The above values generate the fully consistent PC matrix B:

B =





1 1.5874011 2.5198421
0.6299605 1 1.5874011
0.3968503 0.6299605 1





Everything comes back to normality when a1,3 is changed from 2 to 4.
Although this is a rather simple example, the proposed inconsistency reduc-
tion process comes to finding such a triad and changing an offending value
with the value which making the consistency condition to hold or at least to
have one side of the consistency condition close to the other side.

Table 1 shows three triads consisting of matrix elements, which may not
be neighbors in this matrix. Different types of parenthesis have been used
for each triad, only for easier demonstration. All triads above the main
diagonal have the carpenter angle tool shape or the mirror image of the
capital letter “L”, with the middle value in the “elbow” element ideally (for
the consistency) being the product of the outer elements.

1 (1,3) (1,7)
1 [2,4] [2,6]

1 (3,7)
1 {4,5} [4,6] {4,7}

1 {5,7}
1

1

Table 1: PC matrix with various triads

Triads may have one overlapping matrix element. For example, i = 1,
j = 2, and k = 3 creates a triad with one element in the triad created by
i = 1, j = 3, and k = 7. According to the triad production expression:
(aij, aik, ajk), it is element a1,3. Evidently, triad elements do not need to be
neighbors in the matrix, but if they are, they must be just above the main
diagonal, as illustrated by Table 2.
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1 (1,2) (1,3)
1 (2,3) (2,4)

1 (3,4) (3,5)
1 (4,5) (4,6)

1 (5,6) (5,7)
1 (6,7)

1

Table 2: All triads in a 7 × 7 matrix with elements which are neighbors

Inconsistent assessments cannot be accurate but after approximation,
they may be closer to real values. Let us assume that the triad (2, 5, 3)
in Fig. 1 reflects comparisons of three bars with lengths: A, B, and C made
by experts on three different continents by the Internet. Expert 1 compares
A to B giving A/B = 3 and Expert 2 compares B to C giving B/C = 2.
One could object to A/C = 5 given by Expert 3 after A to C are compared.
Evidently, A/B ∗ B/C is A/C, hence the result is 2 ∗ 3 = 6. However, we
really do not know and will never know who made an estimation error! In
fact, we can safely assume that each expert made “just a little bit of error”.
In particular, none of these three values could be accurate. It cannot be
solved by any theory. A solution is needs to be found on individual basis for
each application.

Figure 1: A graphical representation of the triad (2,5,3)

In this study, the approximation error (the most common in science and
engineering) will be used and presented as a percentage. It will be sim-
ply called “the error”. The approximation error in inaccurate data is the

6



discrepancy between an exact value and some approximation to it.
Given some value v and its approximation vapprox, the absolute error is:

∆ = |v−vapprox| where the vertical bars denote the absolute value. For v 6= 0,
the approximation error is defined as:

δ =
|v − vapprox|

|v|
=

∣

∣

∣

∣

v − vapprox
v

∣

∣

∣

∣

=
∣

∣

∣
1 −

vapprox
v

∣

∣

∣

Each triad generates a PC matrix M of the size 3 × 3. Let us use A,
B, and C to reflect lengths of three bars. The value M [1, 2] = 1 represents
A = B, M [2, 3] = 1 represents B = C hence the expectation is A = C but
the third estimates is 5. It is reflected by the last bar hence the error is
500%. As assumed, x can take any arbitrary value and so can the estimation
error. For small values of n, the maximum value of the error, still acceptable
by the eigenvalue-based inconsistency, has been presented in Tab. 3. PC
matrix with triads (1, x, 1) is of a considerable importance and it is analyzed
in Section 5.

4 Axiomatization of inconsistency

It is generally assumed that it was Saaty who in [17] defined PC matrix A as
consistent if and only if aij ∗ ajk = aik for i, j, k = 1, 2, ..., n. However, incon-
sistency was defined and examined before 1977, by at least these four studies
published between 1939 and 1961: [12, 10, 7, 18]. To our knowledge, no
axiomatization has ever been proposed for the general case of pairwise com-
parisons matrix with real positive entries, although it seems that attempts
have been made for matrices with integer values for win-tie-loss entries.

The common sense expectations for the inconsistency indicator ii of a
triad T = (x, y, z) are:

1. ii = 0 for y = x ∗ z,

2. ii ∈ [0, 1) - by common sense, wan “ideal inconsistency” cannot be
achieve,

3. for a consistent triad ii(x, y, z) = 0 with xz = y, increasing or decreas-
ing x, y, z results in increasing ii(x, y, z).
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The third axiom is crucial for any axiomatization. Without this ax-
iom, an inconsistency indicator would not make practical sense. For any
assumed definition for inconsistency, an inconsistency indicator of a triad
T ′ = (x′, y′, z′) cannot be smaller than of T = (x, y, z) if it is worse by
one of more coordinates, which is what the third axiom is about. That is,
ii(x′, y′, z′) ≥ ii(x, y, z). It is a reasonable expectation that the worsening of
a triad, used in the definition of consistency (also in [17]), cannot make the
entire matrix more consistent.
For ii(x, y, z) > 0, there are two cases:

(a) xz < y

(b) xz > y

In case of:

(a) if x′z′ < xz&y′ > y then ii(x, y, z) < ii(x′, y′, z′)

(b) if x′z′ > xz&y′ < y then ii(x, y, z) < ii(x′, y′, z′)

Let us look at the following two examples:

• ii(1.5, 2, 2.5) will increase if 1.5 or 2.5 are increased, since 1.5*2.5 is
already greater than 2. On the other hand, decreasing 2 should also
increase the inconsistency.

• ii(1.5, 2.5, 1.2) will increase if 2.5 in increased, since it is greater than
1.5*1.2=1.8, but decreasing 1.5 or 1.2 should also increase inconsistency
for the same reason.

Based on the proposed axioms for inconsistency and [13], let us define:

f(x, y, z) = 1 − min

{

y

xz
,
xz

y

}

.
It is equivalent to:

f(x, y, z) = 1 − e−|ln(
y

xz)|

.
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The expression | ln( y
xz

)| is the distance of the triad T from 0. When this
distance increases, the f(x, y, z) also increases. It is important to notice here
that this definition allows us to localize the inconsistency in the matrix PC
and it is of a considerable importance for most applications.

Another possible definition of the inconsistency has a global character and
needs a bit more explanations. Let A = {aij}

n
i,j=1 be a reciprocal positive

matrix. The matrix A is consistent if and only if for any 1 ≤ i < j ≤ n the
following equation holds:

aij = ai,i+1ai+1,i+2 . . . aj−1,j.

Therefore, the inconsistency indicator of A can be also defined as:

ii(A) = 1 − min
1≤i<j≤n

min

(

aij
ai,i+1ai+1,i+2 . . . aj−1,j

,
ai,i+1ai+1,i+2 . . . aj−1,j

aij

)

It is equivalent to:

ii(A) = 1 − max
1≤i<j≤n

(

1 − e
−

∣

∣

∣

∣

ln

(

aij

ai,i+1ai+1,i+2...aj−1,j

)
∣

∣

∣

∣

)

Both ii definitions have some advantages and disadvantages. The first
definition allows us to find the localization of the inconsistency. The second
definition may be useful when the global inconsistency is more important.
The first definition follows what is adequately described by the idiom: “one
bad apple spoils the barrel”. A hybrid of using two definitions may be a
practical solution in applications. Alternatively, both definitions can be used
in a sequence.

5 The analysis of CPC(x, n) matrix

In this section, a pairwise matrix with all 1s except for two corners (called
“corner comparisons matrix or CPC”) is analyzed. Consider the matrix
CPC(x, n), with x > 1, defined by

CPC(x, n) =















1 1 · · · 1 x
1 1 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 1
x−1 1 · · · 1 1















∈ Mn×n(R)
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By the Perron-Frobenius theorem, the principal eigenvalue λmax corresponds
to a unique (up to constant multiple) eigenvector w = {wi}

n
i=1 with positive

entries. Since the rows r2, r3 . . . , rn−1 of the matrix CPC(x, n) are equal the
eigenvector, w satisfies w2 = w3 = . . . = wn−1. After normalization, it may
be assumed that

w = (a, 1, 1, . . . , 1, b).

The eigenvalue equation CPC(x, n)w = λmaxw is reduced to the system of
three equations with three unknown a, b and λmax.

a + n− 2 + bx = λmaxa,

a + n− 2 + b = λmax,
a

x
+ n− 2 + b = λmaxb.

By solving the system consisting of the first and the last linear equations,
relative to a and b, we get

a = (n− 2)
x + λmax − 1

λ2
max − 2λmax

, b = (n− 2)
x−1 + λmax − 1

λ2
max − 2λmax

.

Substituting a and b in the second equation by the above expressions (af-
ter some transformations), the following third degree equation for λmax is
obtained:

λ3

max − nλ2

max = (n− 2)(x−1 + x− 2). (1)

It can still be transformed that into

λmax − n

n− 1
=

n− 2

n− 1

x−1 + x− 2

λ2
max

.

Since the right hand side is positive, we must have λmax > n.
Therefore

λmax − n

n− 1
≤

n− 2

n− 1

x−1 + x− 2

n2
. (2)

It has been assumed that x > 1 therefore x−1 < 1
also

n− 2

n− 1
< 1

hence the following inequality holds:
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λmax − n

n− 1
≤

x

n2
. (3)

The inequality (3) has a very important implication. No matter how large
x is, there is always such n that the left hand side of (3) is as small as it
can be assumed. So, regardless of the assumed threshold in [17] (de facto,
originally set to 10%), the matrix is acceptable according to the consistency
rule set in [17].

Evidently, the arbitrarily large x in the matrix CPC(x, n) of size n×n in-
validates the acceptability of this matrix. Hence, by a reductio ad absurdum,
the soundness of the eigenvalue-based inconsistency indicator represented by
the left hand side inequality (3) must be dismissed.

Example:

For n = 6 and x = 6:

λmax − n

n− 1
≤

4

5

4 + (1/6)

36
= 0.0925925...

Actually, we can determine numerically that λmax = 6.406123...
Then

λmax − n

n− 1
= 0.081224...

Now, general reciprocal matrices will be considered. By a careful analysis
of [17], the following lower estimates for λmax for general reciprocal positive
matrices are obtained:

Theorem 1. Let A = {aij}
n
i,j be a reciprocal matrix with positive entries.

Then

λmax ≥ n +
1

3n

ii2(A)
3
√

1 − ii(A)
,

where

ii(A) = 1 − min
i<k<j

min

{

aij
aikakj

,
aikakj
aij

}

.

Proof. Let w = {wi}
n
i=1 be the eigenvector corresponding to the eigenvalue

λmax. By the Perron-Frobenius theory, we have wi > 0. Thus

λmax wi =

n
∑

j=1

aijwj.
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By an easy transformation and the fact that aii = 1 (see [17], pages 237-238),
we get

nλmax − n =
∑

1≤i<j≤n

(

aij
wj

wi

+ aji
wi

wj

)

.

This implies

n(λmax − n) =
∑

1≤i<j≤n

(

aij
wj

wi
+ aji

wi

wj
− 2

)

(4)

Let us assume that the maximal inconsistency is attained at the triad s <
u < t, i.e.

ii(A) = 1 − min

{

ast
asuaut

,
asuaut
ast

}

.

Every term in the sum of (4) is nonnegative as x+x−1−2 ≥ 0, for x > 0 and
aji = a−1

ij . By reducing the sum to three terms corresponding to the triad
s < u < t, we get

n(λmax − n) ≥ asu
wu

ws

+ aus
ws

wu

+ aut
wt

wu

+ atu
wu

wt

+ ast
wt

ws

+ ats
ws

wt

− 6. (5)

Denote
x = asu

wu

ws
, y = aut

wt

wu
, α =

asuaut
ast

.

Then the right hand side of (5) is given by

f(x, y) := x + x−1 + y + y−1 + α−1xy + αx−1y−1 − 6.

By calculating the partial derivatives of f(x, y) and equating them to zero,
we can easily determine that the minimal value of f(x, y) is attained for

x = y = α1/3.

We will consider the case α ≤ 1, i.e. ii(A) = 1−α (the other case α > 1 can
be dealt with similarly). We have

f(x, y) ≥ 3(α1/3 + α−1/3) − 6 = 3α−1/3(1 − α1/3)2

= 3α−1/3

(

1 − α

1 + α1/3 + α2/3

)2

≥
1

3
α−1/3(1 − α)2 =

1

3

ii2(A)
3
√

1 − ii(A)
.
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Summarizing, we get

n(λmax − n) ≥
1

3

ii2(A)
3
√

1 − ii(A)
,

which yields the conclusion.

Remark. Theorem 1 yields

λmax − n

n− 1
≥

1

3(n− 1)n

ii2(A)
3
√

1 − ii(A)
.

Thus for given n (say n = 6), the quantity explodes if the indicator ii(A)
approaches the value 1.

Another lower estimate for λmax can be obtained. It takes into account
the total inconsistency information of the matrix A.

Theorem 2. Let T denote the set of all triads in the matrix A and ii(t) be

the inconsistency indicator of the triad t, i.e. for t = (i, k, j) with i < k < j,
let

ii(t) = 1 − min

{

aij
aikakj

,
aikakj
aij

}

.

Then

λmax ≥ n +
1

3n(n− 2)

∑

t∈T

ii2(t)
3
√

1 − ii(t)
.

Proof. Every term auv with 1 ≤ u < v ≤ n belongs to n−2 triads. Therefore
the formula (4) implies

(n− 2)n (λmax − n)

=
∑

i<k<j

[

aik
wk

wi
+ aki

wi

wk
+ akj

wj

wk
+ ajk

wk

wj
+ aij

wj

wi
+ aji

wi

wj
− 6

]

.

By the proof of Theorem 1, we get that for α = min{aikakj/aij , aij/aikakj}
and t = (i, k, j) we have

aik
wk

wi
+ aki

wi

wk
+ akj

wj

wk
+ ajk

wk

wj
+ aij

wj

wi
+ aji

wi

wj
− 6

≥
1

3
α−1/3(1 − α)2 =

1

3

ii2(t)
3
√

1 − ii(t)
.
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Hence

(n− 2)n (λmax − n) ≥
1

3

∑

t∈T

ii2(t)
3
√

1 − ii(t)
.

The CPC(x, n) matrix in the above example shows that for the eigenvalue-
based consistency index (CI) an error of an arbitrary value is acceptable
for the large enough n (the matrix size). According to AHP theory, the
CPC(x, n) matrix is considered “consistent enough” (or “good enough”) for
CI ≤ 0.1, although it has n arbitrarily erroneous elements in it. The num-
ber n of the erroneous elements grow to infinity with the growing n and it
invalidates using CI for measuring the inconsistency.

5.1 The interpretation of the CPC(x, n) analysis

Matrix CPC(x, n) of the size of 3 × 3 has only one triad: (1, x, 1). Trivially,
the only value of x for this matrix to be consistent is 1 (x = 1 ∗ 1). For
x = 2.62, we have:

CPC(2.62, 3) =





1 1 2.62
1 1 1

0.381679389 1 1





The principal eigenvalue of CPC(2.62, 3) is 3.10397 hence CI = 0.051985
and it is less than 10% of RI = 0.52, hence acceptable due to the fact that
the proposed consistency index (CI) is defined in [17] as:

CI =
λmax − n

n− 1

and the consistency ratio (CR) defined as

CR =
CI

RI

where RI is the average value of CI for random matrices and computed as
0.52 (decreased from 0.58 as stipulated in [17]).

As previously observed, x should be 1, so x = 2.62 gives us 262% error
and it is still acceptable for the eigenvalue-based inconsistency. For matrices
3 × 3, RI has been computed as 0.5245 hence CR < 0.1 for CPC(2.62, 3).

14



The acceptable errors for other n from 3 to 7 have been computed and pre-
sented in Tab. 3

Table 3: Maximal errors acceptable by the eigenvalue-based inconsistency
for CPC(x, n)

n error for (1,x,1)
3 262%
4 417%
5 618%
6 875%
7 1,170%

CPC(x, n) of the size n by n has n − 2 triads of this shape: (1, x, 1).
All triads are formed from these matrix elements (aij, aik, ajk) based the
consistency condition is aik = aij ∗ ajk. Not only the equality does not hold
for x > 1 but for aij = ajk = 1 and x = aij ∗ ajk the inaccuracy grows with
the growing x. For CPC(2.62, 3), it is illustrated by Fig. 2. The question is
evident: “Would you consider such three bars are equal?” and if the answer
is not, “why AHP considers such error as acceptable?”

Values x can be an arbitrarily large value which creates a problem. As-
suming that the exact values are set to aij = ajk = 1, the value x is computed
as aij∗ajk = 1 hence the error for x is x/(1∗1) hence x or x∗100%. For exam-
ple, for n = 7, x = 4.25 the error is 1,170%. However, x can be 1,000,000%,
or more since in Section 5, the proof has been provided that there is such n
for which CI ≤ 0.1 hence acceptable. The 10% threshold, originally set as
“the consistency rule” in [17] and later on slightly decreased for larger n but
it does not matter for the inequality (3) in Section 5 if it is 10% or any other
fixed value.

According the the results in Section 5, there is always such n for which
the deviation of the principal eigenvalue from n is small enough to consider
CPC(x, n) matrix acceptable while the arbitrarily large x has n − 2 triads
with an unacceptably high error x.

The distance-based inconsistency was introduced in [13] and indepen-
dently analyzed in [2]. Its convergence analysis was published in [15]. Ev-
idently, it does not accept big values of x in triads (1, x, 1). It specifically
postulates to re-examine input data for ii > 1/3, hence x > 1.5 is proclaimed

15



Figure 2: Triad (a, b, c) with the 262% error acceptable by the eigenvalue-
based inconsistency for CPC(2.62, 3)

to be suspiciously high and the PC matrix needs to be re-examined.

6 The analysis of FPC(x, n) matrix

We have feared that some of the AHP supporters may hold to the last hope
by believing that “it is only one value in the CPC(x, n) matrix” since it has
x in one matrix element (in fact, x−1 in another corner). However, we have
a surprise for them by what we call FPC (the “full” pairwise comparisons
matrix or the PC matrix full of x). Unlike CPC(x, n), it has all erroneous
triads.
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Figure 3: Maximal errors acceptable by eigenvalue-based inconsistency for
CPC(x, n)

Consider the matrix FPC(x, n), with x > 1, defined by

FPC(x, n) =















1 x · · · x x
x−1 1 · · · x x

...
...

. . .
...

...
x−1 x−1 · · · 1 x
x−1 x−1 · · · x−1 1















∈ Mn×n(R)

Let w be the eigenvector corresponding to the principal eigenvalue λmax.
Thus

x−1(w1 + . . . + wk−1) + wk + x(wk+1 + . . . + wn) = λwk

for k = 1, 2, . . . , n.

Let us notice that for k = 1, the first term is missing while for k = n, the
last term is missing. By subtracting equations corresponding to k and k− 1,
the following holds:
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x−1wk−1 + wk − wk−1 − xwk = λwk − λwk−1

which gives

wk = wk−1

x−1 − 1 + λ

x− 1 + λ

for k = 2, . . . , n.

hence

wk =

(

x−1 − 1 + λ

x− 1 + λ

)k−1

for k = 1, 2, . . . , n.

Substituting it into the first equation results in

1 + x(w2 + w2

2 + . . . + wn−1

2 ) = λ

hence

1 + x
wn

2 − w2

w2 − 1
= λ

by using

w2 =
x−1 − 1 + λ

x− 1 + λ

and by transforming the last equation, the following equation is obtained:

(

x−1 − 1 + λ

x− 1 + λ

)n

=
1

x2

therefore

λ =
x− 1

x

x + x
2

n

x
2

n − 1

Example:

For x = 2.25 and n = 4, we have λmax = 25

6
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Thus
λmax − n

n− 1
=

25

6
− 4

3
=

1

18
≈ 0.055555556

therefore 225% error is still considered as acceptable by AHP theory for
n = 4. The soundness of entering three inaccurate (by 55.6%) comparisons
into the matrix FPC(x, n) and claiming that such matrix is acceptable is
left to the reader for his/her evaluation.
For x = 2.84 and n = 7, the error increases to 64.79%. These errors although
a bit less impressive than for CPC(x, n) are still by far too high for the
estimation lengths of randomly generated bars as it was demonstrated by a
Monte Carlo Study in [14] where a 5% error was reported. The error 284% is
bigger than 262% illustrated in Fig.2. This study considers it unacceptable.
The question is if it is reasonable to consider three bars in Fig.2 as “equal
enough”. The only similar equality of this kind, which comes to our minds
is: “All animals are equal, but some animals are more equal than others.”
[George Orwell, Animal Farm].

7 Conclusions

The presented inconsistency axiomatization is simple, elegant, a consider-
able step forward and a sound mathematical foundation for the further PC
research. It finally allows us to define proper inconsistency indicators, re-
gardless of whether or not they are localizing the inconsistency or serve as
global indicators of inconsistencies in pairwise comparisons matrices. The
distance-based inconsistency definition localizes inconsistency and produces
correct results.

The eigenvalue-based consistency index (CI) fails to increase with the
growing size of the PC matrix and it has the growing number of triads with
each of them having an unacceptable level of inconsistency. As proven in
Section 5, AHP thresholds (both old and recently modified) are unable to
detect large quantities of large inaccuracies existing in CPC(x, n) matrices.
There is always n, for which these inaccuracies are lost in the matrix, no
matter how large they are. The discussed eigenvalue-based inconsistency
indicator is not precise enough for the detection of individual triads, which
turns to be erroneous but “averaged” by the eigenvalue processing. It is
anticipated that every statistical inconsistency indicator, including those with
roots in the principal eigenvalue, may not be good indicators of the problems

19



existing in pairwise comparisons. Simply, they do not look deep enough
into relationships existing in cycles of which triads are the most important
minimal cycles (as pointed out in this study, one or two elements cannot
create an inconsistency cycle). Hopefully, proponents of other inconsistency
indicators will examine their definition by using the proposed axiomatization.
Certainly, getting help from authors of this study is a vital solution.

During the final stages of editing of our study for publication, the nu-
merical results strongly supporting our finding were located in [21] with the
following text in the conclusions:

“In this paper, by simulation analysis, we obtain the following
result: as the matrix size increases, the percent of the matrices
with acceptable consistency (CR ≤ 0.1), decrease dramatically,
but, on the other hand, there will be more and more contradictory
judgments in these sufficiently consistent matrices. This paradox
shows that it is impossible to find some proper critical values
of CR for different matrix sizes. Thus we argue that Saaty’s
consistency test could be unreasonable.”

It is not a paradox anymore. In this study, the mathematical proof and
reasoning for it have been provided.
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