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Abstract. This study examines the notion of inconsistency in pairesmparisons for providing
an axiomatization for it. It also proposes two inconsisyeimglicators for pairwise comparisons.
The primary motivation for the inconsistency reductionipressed by a computer industry concept
“garbage in, garbage out”. The quality of the output depemdthe quality of the input.
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1. Introduction

The method of pairwise comparisons (PC method here) idattd to Fechner (see [5]) as a formal
scientific method although it was first mentioned by Condoirc¢4], who only used it in its primitive
form: win/loss. However, Thurstone (see [20]) proposedtidn&nown as “The Law of Comparative
Judgments” in 1927. In 1977, Saaty proposed what is knowheagnalytic Hierarchy Process (AHP)
method based on modified pairwise comparisons with a higyastructure in [17]. In this study, how-
ever, the hierarchy is not considered.
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Saaty’s study [17] had a profound impact on the pairwise @mapns research. However, his AHP
should not be equalized with pairwise comparisons, des@iteg them. The restrictions assumed by
Saaty (e.g., fixed scale: 1 to 9) probably serves its progometh for whatever purpose he has designed
it. AHP is a subset of the pairwise comparisons method whagsdot assume any particular scale. A
proof was provided in [6] that a small scale (1 to 3) has ddsinathematical properties for the use in
pairwise comparisons.

It is also worth to note that this study considers only thetiplidative PC which is based dttnow
many times?; while the additive version of pairwise comparisons (“byhmuch...")was recently ana-
lyzed in [22]. It has a different type of inconsistency (ndtieessed here).

Recently, the study [16] presents an innovate iterativeisiguirating estimation algorithm that tries
to deal with the situation when exact estimations for sormeepts (stimulus)’x are a priori known and
fixed, whilst the estimates for the others (unknown concéptsneed to be computed. The relationship
between the local estimation error, understood as the geeasolute erraf'(c) over all direct estimates
for the concept € Cy and the pairwise comparisons matrix inconsistency indeka@svn.

Regretfully, pairwise comparisons theory is not as popatam mathematics, for example, partial
differential equations, hence basic concepts need to lsepied in the next section but it is not PC
method experts.

2. Pairwise comparisons basics

An N x N pairwise comparison matrix simply is a square mafvix= [m,;] such thatn;; > 0 for

everyi,j = 1,...,n. A pairwise comparison matriX/ is calledreciprocal if m;; = % for every
Ji
1,7 =1,...,n (then automaticallyn;; = 1 for everyi = 1,...,n). Let us assume that:
I mi2 -+ mig
1
M= s 1 man
1 1 ... 1

min man
wherem;; expresses a relative preference of entity (or stimuyljvers;.
A pairwise comparison matrix/ is called consistent (or transitive) if

Myj * Mg = Mif
foreveryi,j, k=1,2,...,n.

We will refer to it as a “consistency condition”. While evetgnsistent matrix is reciprocal, the
converse is false in general. If the consistency conditioesdnot hold, the matrix is inconsistent (or
intransitive).

Consistent matrices correspond to the ideal situation iichwtihere are the exact values, .. ., s,
for the stimuli. The quotients;; = s;/s; then form a consistent matrix. The vectoe [si,...s,] is
unique up to a multiplicative constant. The challenge ofghewise comparisons method comes from
the lack of consistency of the pairwise comparisons matnaeaich arise in practice (while as a rule, all
the pairwise comparisons matrices are reciprocal). Given & n matrix M, which is not consistent,
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the theory attempts to provide a consistent n matrix M’ which differs from matrixA/ “as little as
possible”.

The matrix: M = s;/s; is consistent for all (even random) valugs It is an important observation
since it implies that a problem of approximation is reallyralpem of a norm selection and the distance
minimization. For the Euclidean norm, the vector of geoimetreans (equal to the principal eigenvector
for the transitive matrix) is the one which generates it. dlegs to say that only optimization methods
can approximate the given matrix for the assumed norm (€5d for the Euclidean distance, as recently
proposed in [8]). Such type of matrix is examined in [19] asdefree” matrix.

It is unfortunate that the singular form “comparison” is ®iimes used considering that a minimum
of three comparisons are needed for the method to have dgatatieaning. Comparing two entities
(stimuli or properties) in pairs is irreducible, since mayione entity compared with itself gives trivially
1. Comparing only two entitie2(x 2 PC matrix) does not involve inconsistency. Entities anthieir
properties are often called stimuli in the PC research tarely used in applications.

3. The pairwise comparisonsinconsistency notion

The study [17] includes: “We may assume that when the inste1sty indicator shows the perturbations
from consistency are large and hence the result is unrelitiied information available cannot be used to
derive a reliable answer.”

The above quotation is consistent with the popular compatiaige GIGO (garbage in — garbage
out). GIGO summarizes what has been known for a long timeingegjood results from “dirty data”
is unrealistic, and surely, cannot be guaranteed. An appaiion of a pairwise comparisons matrix is
meaningful if the inconsistency is acceptable. It can beedpnlocalizing the inconsistency and reducing
it to a certain predefined threshold. For the time being,nhensistency threshold is arbitrary or set by a
heuristic, since there is no theory to find it. It is a similémation to p-value in statistics — often assumed
as 0.05 (or any other arbitrary value), but can be undermimeeach individual case.

As pointed out earlier, given an inconsistent matfvix the theory attempts to approximate it with a
consistent matrix\/’ that differs from matrix)/ “as little as possible”. The consistency of a matrix A,
expressed byn;; * m;, = m;;,, was called in [17] a “cardinal consistency”. In this stuayerm “triad”
is used for(m,;, m;,, mji) (these three matrix elements in the above cardinal consigieondition).

Before progressing to a formal inconsistency definitiore thost important question needs to be
addressed:where does the inconsistency come fromPhe short answer to this question is from the
excess of input data. The superfluous data comes from dotiedata for all pairs combinations which
isn * (n — 1)/2, while onlyn — 1 proper comparisons (e.qg., the first row or column and eveyodials
or some of their combinations) would suffice. The inconsisyein a triad is illustrated by the following
example.

Example:
This is an inconsistent matrix/, 3 x 3 with one triad(2, 2, 2), which is marked by the bold font, is:

1 2 2
A=|1/2 1 2
12 1/2 1
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Evidently, matrix A displays an abnormality sinc&x 2 # 2. The computed vector of weighs;(
mentioned earlier in this section)is:

s =[0.4934,0.3108, 0.1958]
The above values generate the fully consistent PC matrix B:

1 15874011 2.5198421
B = 10.6299605 1 1.5874011
0.3968503 0.6299605 1

Everything comes back to normality when s is changed from 2 to 4. Although this is a rather
simple example, the proposed inconsistency reductioreggocomes to finding such a triad and changing
an offending value with the value which making the consisgezondition to hold or at least to have one
side of the consistency condition close to the other side.

Table 1 shows three triads consisting of matrix elementghumay not be neighbors in this matrix.
Different types of parenthesis have been used for each wialgl for easier demonstration. All triads
above the main diagonal have the carpenter angle tool slidpe mirror image of the capital letter “L”,
with the middle value in the “elbow” element ideally (for thensistency) being the product of the outer
elements.

1 (1,3) 1,7)
1 [2,4] [2,6]
1 (3,7)
1 {4,5} | [4,6] | {4,7}
1 {5,7}
1
1

Table 1. PC matrix with various triads

Triads may have one overlapping matrix element. For examplel, j = 2, andk = 3 creates a
triad with one element in the triad createddby 1, j = 3, andk = 7. According to the triad production
expressionia;;, aix, ajk), it is elementu; 3. Evidently, triad elements do not need to be neighbors in the
matrix, but if they are, they must be just above the main diayas illustrated by Table 2.

Inconsistent assessments cannot be accurate but afteyxapation, they may be closer to real
values. Let us assume that the trigd5, 3) in Fig. 1 reflects comparisons of three bars with lengths:
A, B, and C made by experts on three different continents byirtternet. Expert 1 compares A to B
giving A/B = 3 and Expert 2 compares B to C givirg/C = 2. One could object tol/C' = 5 given
by Expert 3 after A to C are compared. Evidently/B « B/C is A/C, hence the result 8 « 3 = 6.
However, we really do not know and will never know who made stingtion error! In fact, we can
safely assume that each expert made “just a little bit ofrérda particular, none of these three values
could be accurate. It cannot be solved by any theory. A soius needs to be found on individual basis
for each application.
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1 [ @2 ] @3
1 (2,3) (2,4)
1 | 34| 35
1 | (45) | 46
1 | 56| 57
1 | (67)
1

Table 2. All triads in & x 7 matrix with elements which are neighbors

Figure 1. A graphical representation of the triad (2,5,3)

In this study, the approximation error (the most common iersze and engineering) will be used
and presented as a percentage. It will be simply called ‘tttg"e The approximation error in inaccurate
data is the discrepancy between an exact value and somexapation to it.

Given some value and its approximation,,,.., the absolute error isA = |v — vgpproz| Where
the vertical bars denote the absolute value.#gr0, the approximation error is defined as:

v — Uapproa:
(Y

5 _ ‘U - Uapproa:‘ _
[v]

’UQ TOoXx
_ ‘1_ Vapprow
v

Each triad generates a PC mathikof the size3 x 3. Let us use A, B, and C to reflect lengths of three
bars. The valué/[1, 2] = 1 representsA = B, M2, 3] = 1 representd3 = C hence the expectation is
A = C but the third estimates is 5. It is reflected by the last bacbehe error is 500%. As assumed,
can take any arbitrary value and so can the estimation ¢rooismall values of., the maximum value of
the error, still acceptable by the eigenvalue-based instamy, has been presented in Tab. 3. PC matrix
with triads (1, z, 1) is of a considerable importance and it is analyzed in Se&ion

4. Axiomatization of inconsistency

It is generally assumed that it was Saaty who in [17] definechR@ix A as consistent if and only if
a;j * aj, = a; fori, j,k = 1,2,...,n. However, inconsistency was defined and examined beforé, 197
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by at least these four studies published between 1939 artd 188, 10, 7, 18]. To our knowledge, no
axiomatization has ever been proposed for the general dgs@iravise comparisons matrix with real
positive entries, although it seems that attempts have beste for matrices with integer values for
win-tie-loss entries.

The common sense expectations for the inconsistency toditgeof a triad7T" = (x, y, z) are:
1 ii=0fory=xxz,
2. i1 € [0,1) - by common sense, wan “ideal inconsistency” cannot be aehie

3. for a consistent triadi(z,y,z) = 0 with zz = vy, increasing or decreasing, y, z results in
increasingii(z, y, z).

The third axiom is crucial for any axiomatization. Withotig axiom, an inconsistency indicator
would not make practical sense. For any assumed definitidndonsistency, an inconsistency indicator
of atriadT’ = (2,4, 2’) cannot be smaller than @f = (z,y, 2) if it is worse by one of more coor-
dinates, which is what the third axiom is about. Thatii$y’,v', 2') > ii(x,y, 2). Itis a reasonable
expectation that the worsening of a triad, used in the defimdf consistency (also in [17]), cannot make
the entire matrix more consistent.

Forii(z,y,z) > 0, there are two cases:

@ zz<uy

(b) zz >y

In case of:

@) if 2’2" < wz&y’ > ythenii(z,y, z) < idi(a',y, 2)
(b) if 2’2" > z2&y’ < y thenii(z,y, z) < ii(2',y, 2")
Let us look at the following two examples:

e ii(1.5,2,2.5) will increase if 1.5 or 2.5 are increased, since 1.5*2.51isaly greater than 2. On
the other hand, decreasing 2 should also increase the intants/.

e 1i(1.5,2.5,1.2) willincrease if 2.5 in increased, since it is greater th&t1.2=1.8, but decreasing
1.5 or 1.2 should also increase inconsistency for the saas®ne

Based on the proposed axioms for inconsistency and [13]sléefine:

Yy Tz

fla,y,2) =1 —min{—, }

Tz Yy

It is equivalent to:
f(xayaz) =1- €7|ln(%)|'
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The expressiohln(-£ )| is the distance of the trigfl from 0. When this distance increases, fiie, y, z)
also increases. It is important to notice here that this diefimallows us to localize the inconsistency in
the matrix PC and it is of a considerable importance for mpptieations.

Another possible definition of the inconsistency has a dloharacter and needs a bit more expla-
nations. Letd = {aij}gjjzl be a reciprocal positive matrix. The mattikis consistent if and only if for
anyl <i < j < n the following equation holds:

Ajj = Qjgp 10142 - - - Qj—1,5-

Therefore, the inconsistency indicator4fcan be also defined as:

.. . . Qij Qi 101,042 - - - Q15
ii(A)=1— min mln( o | / ’J>
1<i<j<n Qi i1 41,542 - - - Gj—1,5 Qjj
It is equivalent to:
—|In i
ii(A) =1— max 1—e fhit1%i4L,i42 41,
1<i<j<n

Both ii definitions have some advantages and disadvantages. Thaefirsition allows us to find
the localization of the inconsistency. The second defimitiay be useful when the global inconsistency
is more important. The first definition follows what is adetgpa described by the idiom: “one bad
apple spoils the barrel”. A hybrid of using two definitionsyri@e a practical solution in applications.
Alternatively, both definitions can be used in a sequence.

5. Theanalysisof CPC(x,n) matrix

In this section, a pairwise matrix with all 1s except for twarreers (called “corner comparisons matrix
or CPC”) is analyzed. Consider the mat€@i°C(z, n), with x > 1, defined by

(11 1 x|
1 1 -+ 11
CPC(x,n) = Lo bt € Mpxa(R)
1 1 - 11
R U

By the Perron-Frobenius theorem, the principal eigenvajpg corresponds to a unique (up to constant
multiple) eigenvectorw = {w;}}_; with positive entries. Since the rows,rs...,r,_; of the matrix
CPC(z,n) are equal the eigenvectap, satisfiesw, = w3 = ... = w,_1. After normalization, it may
be assumed that

w=(a,1,1,...,1,b).

The eigenvalue equatiafl PC(z, n)w = Apaxw is reduced to the system of three equations with three
unknownsa, b and\ax.

a+n—24+br = Apaxa,

a+n—24+b = Anax,
S hn—24b = Apab.
T



492 W.W. Koczkodaj and R. Szwarc / On Axiomatization of Inctersiy Indicators for Pairwise Comparisons

By solving the system consisting of the first and the lasdirequations, relative to andb, we get

27V Apax — 1
)\2 - 2)\max '

max

T+ Amax — 1
)\2 - 2)\max’

max

a=(n-2) b= (n—-2)

Substitutinga andb in the second equation by the above expressions (after gam&fdrmations), the
following third degree equation fox,, . is obtained:

A?nax - n)‘?nax = (TL - 2)(5671 +x— 2) (l)

It can still be transformed that into

Amax — 1 n—2zx 1+4+z—2

n—1 n-—1 A2

max

Since the right hand side is positive, we must hayg, > n.
Therefore

)\max—n<n—2 x_l—l—:c—Q.

n—1 ~—n-1 n?

(2)

It has been assumed that> 1 thereforer—! < 1

also 5
n—
1
n—1 <
hence the following inequality holds:
Amax — 1 x
B ©

The inequality (3) has a very important implication. No reatiow larger is, there is always such
n that the left hand side of (3) is as small as it can be assunede§ardless of the assumed threshold
in [17] (de facto, originally set to 10%), the matrix is actadge according to the consistency rule set in
[17].

Evidently, the arbitrarily large: in the matrixC PC(z, n) of sizen x n invalidates the acceptability
of this matrix. Hence, by eeductio ad absurdupthe soundness of the eigenvalue-based inconsistency
indicator represented by the left hand side inequality (@3tbe dismissed.

Example:

Forn = 6 andz = 6:

Amax — 1 _ 44+ (1/6)
<= = 0.0925925...
n—1 5 36
Actually, we can determine numerically that,.. = 6.406123...

Then \
L_ln — 0.081224...

n —
Now, general reciprocal matrices will be considered. By ieftd analysis of [17], the following
lower estimates foh,. for general reciprocal positive matrices are obtained:
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Theorem 1. Let A = {a;;}}; be a reciprocal matrix with positive entries. Then

NI 1 ii%(4)
X n 5 a0
m 3n /1 —ii(A)
where
ii(A) =1 — min min {ﬂ, M} .
1<k<j ik QL Qij
Proof:

Letw = {w;}!", be the eigenvector corresponding to the eigenvalyg.. By the Perron-Frobenius
theory, we havev; > 0. Thus

n
)\maxwi: E al-jwj.
j=1

By an easy transformation and the fact that= 1 (see [17], pages 237-238), we get
wj wy
NAmax — N = Z (aij;]i + ajiw—;> .
1<i<j<n
This implies
w; w;
n()\max — TL) = Z <CLZ‘J’EZ + ajiw—; — 2) (4)
1<i<j<n
Let us assume that the maximal inconsistency is attaindeatinds < u < t, i.e.

ii(4)=1 —min{ Gt M}.

b
A5y Qut Ast

Every term in the sum of (4) is nonnegativesas- z~! — 2 > 0, for z > 0 anda;; = ai_];_ By reducing
the sum to three terms corresponding to the teiadu < t, we get

Wy, Ws Wy Wy, Wy Ws
n()\max - n) Z Agy—— + Ays—— + Ayt —— + Aty —— + Ast— + Ats— — 6. (5)
s Wy, U Wy Ws Wt
Denote
Wy, Wy A5, Gyt
T =0sy— Y=0Qut——, &= .
s u st

Then the right hand side of (5) is given by
fry)=z+a +y+y+a oy +azty -6

By calculating the partial derivatives ¢f(z, y) and equating them to zero, we can easily determine that
the minimal value off (x, y) is attained for

r=y=a«
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We will consider the case < 1, i.e.ii(4) = 1 — « (the other caser > 1 can be dealt with similarly).
We have

Fz,y) > 303 +a713) — 6 = 3a71/3(1 — 1/3)?

-« ! 1 ii%(A)
— 3q°1/3 > 2o V31 a2 =2
@ (1+a1/3+a2/3> —3a ( a) 3 Sl—ii(A)
Summarizing, we get
2
n()\max TL) > 1 = (A) 5
3 Y1 —ii(A)

which yields the conclusion. O
Remark. Theorem 1 yields

Amax — 1 1 "2(A

>
n—1 T 3n-1)n 31
Thus for givern (sayn = 6), the quantity explodes if the mdlcatQ(A) approaches the value 1.

Another lower estimate fak,,., can be obtained. It takes into account the total inconsigterfor-
mation of the matrixA.

Theorem 2. Let T denote the set of all triads in the matrikandii(t¢) be the inconsistency indicator of
the triadt, i.e. fort = (i, k, j) withi < k < j, let

- . Qi Qs
ii(t) = 1—m1n{—”,M}.
[ Qg
Then

)\max Z Z
n(n —2) teT @1—11
Proof:
Every terma,,, with 1 < u < v < n belongs tan — 2 triads. Therefore the formula (4) implies
(n—2)n (Apax — M)
Wi w; w;
= Z |:azk;_ + akz_ + ak]_ + ajk;_ + az]_ + a/_]l_ -6
. ws Wi wy
i<k<j
By the proof of Theorem 1, we get that for= min{a;yax;/ai;, aij/anar;} andt = (i, k, j) we have
Wy

W w;
ik, +akl—+akj—+a]k —i—aw —|—aﬂ -6
Wi Wk Wi wy

Hence
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TheCPC(x,n) matrix in the above example shows that for the eigenvalsedaonsistency index
(CI) an error of an arbitrary value is acceptable for thedaggough: (the matrix size). According to
AHP theory, the”' PC(z, n) matrix is considered “consistent enough” (or “good enoddtw’ C' 1 < 0.1,
although it has: arbitrarily erroneous elements in it. The humieof the erroneous elements grow to
infinity with the growingn and it invalidates using’'l for measuring the inconsistency.

5.1. Theinterpretation of the CPC(z,n) analysis

Matrix C PC(x,n) of the size of3 x 3 has only one triad(1, =, 1). Trivially, the only value ofz for this
matrix to be consistent is Ir(= 1 % 1). Forxz = 2.62, we have:

1 1 2.62
CPC(2.62,3) = 1 11
0.381679389 1 1

The principal eigenvalue @f PC(2.62, 3) is 3.10397 hencé€'I = 0.051985 and it is less than 10%
of RI = 0.52, hence acceptable due to the fact that the proposed congistelex (Cl) is defined in
[17] as:

CI — Amaz — N

n—1
and the consistency ratio (CR) defined as

e
~ RI

whereR] is the average value @f I for random matrices and computed as 0.52 (decreased fr@ma8.5
stipulated in [17]).

As previously observed; should be 1, sa: = 2.62 gives us 262% error and it is still acceptable
for the eigenvalue-based inconsistency. For matrices3, RI has been computed as 0.5245 hence
CR < 0.1 for CPC(2.62,3). The acceptable errors for otherfrom 3 to 7 have been computed and
presented in Tab. 3

CR

Table 3. Maximal errors acceptable by the eigenvalue-basetsistency fo' PC(x,n)

n error for (1,x,1)
3 262%

4 417%

5 618%
6

7

875%
1,170%

CPC(z,n) of the sizen by n hasn — 2 triads of this shape(1, z,1). All triads are formed from
these matrix elements:;;, a;;, a;,) based the consistency conditiondig = a;; * a;;. Not only the
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Figure 2. Triada, b, ¢) with the 262% error acceptable by the eigenvalue-baseasgisiency folC PC(2.62, 3)

equality does not hold far > 1 but fora;; = a;; = 1 andz = a;; * aj;, the inaccuracy grows with the
growingz. ForCPC(2.62,3), itis illustrated by Fig. 2. The question is evident: “Wouwldu consider
such three bars are equal?” and if the answer is not, “why AbiRiders such error as acceptable?”

Valuesx can be an arbitrarily large value which creates a problensusing that the exact values
are settay;; = aj;, = 1, the valuer is computed as;; x a;, = 1 hence the error far isz/(1+ 1) hence
x or x x 100%. For example, fon = 7, x = 4.25 the error is 1,170%. However,can be 1,000,000%,
or more since in Section 5, the proof has been provided tlea¢ tis such for which CI < 0.1 hence
acceptable. The 10% threshold, originally set as “the stascy rule” in [17] and later on slightly
decreased for larger but it does not matter for the inequality (3) in Section 5 i&itL0% or any other
fixed value.

According the the results in Section 5, there is always sufdr which the deviation of the principal
eigenvalue from is small enough to considér PC(x, n) matrix acceptable while the arbitrarily large
x hasn — 2 triads with an unacceptably high error

The distance-based inconsistency was introduced in [18]imdependently analyzed in [2]. Its
convergence analysis was published in [15]. Evidently,oiésinot accept big values afin triads
(1,z,1). It specifically postulates to re-examine input dataifor 1/3, hencer > 1.5 is proclaimed to
be suspiciously high and the PC matrix needs to be re-examine
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Figure 3. Maximal errors acceptable by eigenvalue-basashsistency for” PC(z, n)

6. Theanalysisof FFPC(xz,n) matrix

We have feared that some of the AHP supporters may hold tahdbpe by believing that “it is only
one value in th&? PC(x, n) matrix” since it hass in one matrix element (in fact;~* in another corner).
However, we have a surprise for them by what we gaitC (the “full” pairwise comparisons matrix or
the PC matrix full ofx). Unlike CPC(z,n), it has all erroneous triads.

Consider the matri¥' PC(x, n), with x > 1, defined by

1 T
|
FPC(x,n) = t| € Muxn(R)
zb ot 1 =
_xfl zb oo gt 1_

Let w be the eigenvector corresponding to the principal eigelval,.... Thus

N (wy + . A W) + Wi+ B (Wt F -+ wn) = Awy,

fork=1,2,...,n.

Let us notice that fok = 1, the first term is missing while fok = n, the last term is missing. By
subtracting equations correspondingstandk — 1, the following holds:

T Wwp_ 1 4 W — Wi — TWE = MW — AWg_1
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which gives
14\
W = Wi_
K k=l z—1+ X\
fork=2,...,n.
hence

fork=1,2,...,n.
Substituting it into the first equation results in

1+ z(wy +wi + ...+ wh™H) =\

hence "
1oz =2
’wg—l
by using
-1+ )
Wy = —————
2 r—1+ A

and by transforming the last equation, the following equrats obtained:
e 14" 1
z—14+ X a2

2
r—1lx+xn

2
T zn—1

therefore
A\ =

Example:

Forz = 2.25 andn = 4, we have),q, = %
Thus A .

Amaz — N 6 T F -

1 — 3 ~— &% 0.055555556

therefore 225% error is still considered as acceptable by Alhkory forn = 4. The soundness of
entering three inaccurate (by 55.6%) comparisons into thgixnF PC(x,n) and claiming that such
matrix is acceptable is left to the reader for his/her evana
Forz = 2.84 andn = 7, the error increases to 64.79%. These errors although edsitinpressive than
for CPC(z,n) are still by far too high for the estimation lengths of randpenerated bars as it was
demonstrated by a Monte Carlo Study in [14] where a 5% errarneported. The error 284% is bigger
than 262% illustrated in Fig.2. This study considers it wegtable. The question is if it is reasonable
to consider three bars in Fig.2 as “equal enough”. The omhjlai equality of this kind, which comes
to our minds is: “All animals are equal, but some animals aoeenequal than others.” [George Orwell,
Animal Farm].
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7. Conclusions

The presented inconsistency axiomatization is simplgagle a considerable step forward and a sound
mathematical foundation for the further PC research. Iflfirdlows us to define proper inconsistency
indicators, regardless of whether or not they are localizive inconsistency or serve as global indica-
tors of inconsistencies in pairwise comparisons matriddse distance-based inconsistency definition
localizes the inconsistency and produces correct results.

The eigenvalue-based consistency index (ClI) fails to emmeavith the growing size of the PC matrix
and it has the growing number of triads with each of them rgan unacceptable level of inconsis-
tency. As proven in Section 5, AHP thresholds (both old amémdy modified) are unable to detect
large quantities of large inaccuracies existingdC(x, n) matrices. There is always, for which
these inaccuracies are lost in the matrix, no matter hoveltrgy are. The discussed eigenvalue-based
inconsistency indicator is not precise enough for the dieteof individual triads, which turns to be er-
roneous but “averaged” by the eigenvalue processing. htisipated that every statistical inconsistency
indicator, including those with roots in the principal eigalue, may not be good indicators of the prob-
lems existing in pairwise comparisons. Simply, they do nokldeep enough into relationships existing
in cycles of which triads are the most important minimal egclas pointed out in this study, one or two
elements cannot create an inconsistency cycle). Hopgfulhponents of other inconsistency indicators
will examine their definition by using the proposed axiorrattion. Certainly, getting help from authors
of this study is a vital solution.

During the final stages of editing of our study for publicatithe numerical results strongly support-
ing our finding were located in [21] with the following text ihe conclusions:

“In this paper, by simulation analysis, we obtain the follogvresult: as the matrix size
increases, the percent of the matrices with acceptableéstensy C R < 0.1), decrease
dramatically, but, on the other hand, there will be more amdentontradictory judgments
in these sufficiently consistent matrices. This paradoxvshihat it is impossible to find
some proper critical values of CR for different matrix sizéghus we argue that Saaty’s
consistency test could be unreasonable.”

Itis not a paradox anymore. In this study, the mathematicaifiand reasoning for it have been provided.
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