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Abstract. This study examines the notion of inconsistency in pairwisecomparisons for providing
an axiomatization for it. It also proposes two inconsistency indicators for pairwise comparisons.
The primary motivation for the inconsistency reduction is expressed by a computer industry concept
“garbage in, garbage out”. The quality of the output dependson the quality of the input.
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1. Introduction

The method of pairwise comparisons (PC method here) is attributed to Fechner (see [5]) as a formal
scientific method although it was first mentioned by Condorcet in [4], who only used it in its primitive
form: win/loss. However, Thurstone (see [20]) proposed what is known as “The Law of Comparative
Judgments” in 1927. In 1977, Saaty proposed what is known as the Analytic Hierarchy Process (AHP)
method based on modified pairwise comparisons with a hierarchy structure in [17]. In this study, how-
ever, the hierarchy is not considered.
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Saaty’s study [17] had a profound impact on the pairwise comparisons research. However, his AHP
should not be equalized with pairwise comparisons, despiteusing them. The restrictions assumed by
Saaty (e.g., fixed scale: 1 to 9) probably serves its proponent well for whatever purpose he has designed
it. AHP is a subset of the pairwise comparisons method which does not assume any particular scale. A
proof was provided in [6] that a small scale (1 to 3) has desired mathematical properties for the use in
pairwise comparisons.

It is also worth to note that this study considers only the multiplicative PC which is based on“how
many times?”, while the additive version of pairwise comparisons (“by how much...”)was recently ana-
lyzed in [22]. It has a different type of inconsistency (not addressed here).

Recently, the study [16] presents an innovate iterative heuristic rating estimation algorithm that tries
to deal with the situation when exact estimations for some concepts (stimulus)CK are a priori known and
fixed, whilst the estimates for the others (unknown conceptsCU ) need to be computed. The relationship
between the local estimation error, understood as the average absolute errorE(c) over all direct estimates
for the conceptc ∈ CU and the pairwise comparisons matrix inconsistency index isshown.

Regretfully, pairwise comparisons theory is not as popularas in mathematics, for example, partial
differential equations, hence basic concepts need to be presented in the next section but it is not PC
method experts.

2. Pairwise comparisons basics

An N × N pairwise comparison matrix simply is a square matrixM = [mij] such thatmij > 0 for
every i, j = 1, . . . , n. A pairwise comparison matrixM is calledreciprocal if mij = 1

mji
for every

i, j = 1, . . . , n (then automaticallymii = 1 for everyi = 1, . . . , n). Let us assume that:

M =













1 m12 · · · m1n

1

m12
1 · · · m2n

...
...

...
...

1

m1n

1

m2n
· · · 1













wheremij expresses a relative preference of entity (or stimuli)si oversj .
A pairwise comparison matrixM is called consistent (or transitive) if

mij ∗mjk = mik

for everyi, j, k = 1, 2, . . . , n.

We will refer to it as a “consistency condition”. While everyconsistent matrix is reciprocal, the
converse is false in general. If the consistency condition does not hold, the matrix is inconsistent (or
intransitive).

Consistent matrices correspond to the ideal situation in which there are the exact valuess1, . . . , sn
for the stimuli. The quotientsmij = si/sj then form a consistent matrix. The vectors = [s1, . . . sn] is
unique up to a multiplicative constant. The challenge of thepairwise comparisons method comes from
the lack of consistency of the pairwise comparisons matrices which arise in practice (while as a rule, all
the pairwise comparisons matrices are reciprocal). Given an n × n matrixM , which is not consistent,
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the theory attempts to provide a consistentn × n matrix M ′ which differs from matrixM “as little as
possible”.

The matrix:M = si/sj is consistent for all (even random) valuesvi. It is an important observation
since it implies that a problem of approximation is really a problem of a norm selection and the distance
minimization. For the Euclidean norm, the vector of geometric means (equal to the principal eigenvector
for the transitive matrix) is the one which generates it. Needless to say that only optimization methods
can approximate the given matrix for the assumed norm (e.g.,LSM for the Euclidean distance, as recently
proposed in [8]). Such type of matrix is examined in [19] as “error-free” matrix.

It is unfortunate that the singular form “comparison” is sometimes used considering that a minimum
of three comparisons are needed for the method to have a practical meaning. Comparing two entities
(stimuli or properties) in pairs is irreducible, since having one entity compared with itself gives trivially
1. Comparing only two entities (2 × 2 PC matrix) does not involve inconsistency. Entities and/ortheir
properties are often called stimuli in the PC research but are rarely used in applications.

3. The pairwise comparisons inconsistency notion

The study [17] includes: “We may assume that when the inconsistency indicator shows the perturbations
from consistency are large and hence the result is unreliable, the information available cannot be used to
derive a reliable answer.”

The above quotation is consistent with the popular computeradage GIGO (garbage in – garbage
out). GIGO summarizes what has been known for a long time: getting good results from “dirty data”
is unrealistic, and surely, cannot be guaranteed. An approximation of a pairwise comparisons matrix is
meaningful if the inconsistency is acceptable. It can be done by localizing the inconsistency and reducing
it to a certain predefined threshold. For the time being, the inconsistency threshold is arbitrary or set by a
heuristic, since there is no theory to find it. It is a similar situation to p-value in statistics – often assumed
as 0.05 (or any other arbitrary value), but can be underminedfor each individual case.

As pointed out earlier, given an inconsistent matrixM , the theory attempts to approximate it with a
consistent matrixM ′ that differs from matrixM “as little as possible”. The consistency of a matrix A,
expressed bymij ∗mjk = mik, was called in [17] a “cardinal consistency”. In this study,a term “triad”
is used for(mij ,mik,mjk) (these three matrix elements in the above cardinal consistency condition).

Before progressing to a formal inconsistency definition, the most important question needs to be
addressed:“where does the inconsistency come from?”The short answer to this question is from the
excess of input data. The superfluous data comes from collecting data for all pairs combinations which
is n ∗ (n− 1)/2, while onlyn− 1 proper comparisons (e.g., the first row or column and even diagonals
or some of their combinations) would suffice. The inconsistency in a triad is illustrated by the following
example.

Example:
This is an inconsistent matrixM , 3× 3 with one triad(2, 2, 2), which is marked by the bold font, is:

A =







1 2 2

1/2 1 2

1/2 1/2 1






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Evidently, matrixA displays an abnormality since2 ∗ 2 6= 2. The computed vector of weight (si
mentioned earlier in this section)is:

s = [0.4934, 0.3108, 0.1958]

The above values generate the fully consistent PC matrix B:

B =







1 1.5874011 2.5198421

0.6299605 1 1.5874011

0.3968503 0.6299605 1







Everything comes back to normality whena1,3 is changed from 2 to 4. Although this is a rather
simple example, the proposed inconsistency reduction process comes to finding such a triad and changing
an offending value with the value which making the consistency condition to hold or at least to have one
side of the consistency condition close to the other side.

Table 1 shows three triads consisting of matrix elements, which may not be neighbors in this matrix.
Different types of parenthesis have been used for each triad, only for easier demonstration. All triads
above the main diagonal have the carpenter angle tool shape or the mirror image of the capital letter “L”,
with the middle value in the “elbow” element ideally (for theconsistency) being the product of the outer
elements.

1 (1,3) (1,7)

1 [2,4] [2,6]

1 (3,7)

1 {4,5} [4,6] {4,7}

1 {5,7}

1

1

Table 1. PC matrix with various triads

Triads may have one overlapping matrix element. For example, i = 1, j = 2, andk = 3 creates a
triad with one element in the triad created byi = 1, j = 3, andk = 7. According to the triad production
expression:(aij , aik, ajk), it is elementa1,3. Evidently, triad elements do not need to be neighbors in the
matrix, but if they are, they must be just above the main diagonal, as illustrated by Table 2.

Inconsistent assessments cannot be accurate but after approximation, they may be closer to real
values. Let us assume that the triad(2, 5, 3) in Fig. 1 reflects comparisons of three bars with lengths:
A, B, and C made by experts on three different continents by the Internet. Expert 1 compares A to B
giving A/B = 3 and Expert 2 compares B to C givingB/C = 2. One could object toA/C = 5 given
by Expert 3 after A to C are compared. Evidently,A/B ∗ B/C is A/C, hence the result is2 ∗ 3 = 6.
However, we really do not know and will never know who made an estimation error! In fact, we can
safely assume that each expert made “just a little bit of error”. In particular, none of these three values
could be accurate. It cannot be solved by any theory. A solution is needs to be found on individual basis
for each application.
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1 (1,2) (1,3)

1 (2,3) (2,4)

1 (3,4) (3,5)

1 (4,5) (4,6)

1 (5,6) (5,7)

1 (6,7)

1

Table 2. All triads in a7× 7 matrix with elements which are neighbors

Figure 1. A graphical representation of the triad (2,5,3)

In this study, the approximation error (the most common in science and engineering) will be used
and presented as a percentage. It will be simply called “the error”. The approximation error in inaccurate
data is the discrepancy between an exact value and some approximation to it.

Given some valuev and its approximationvapprox, the absolute error is:∆ = |v − vapprox| where
the vertical bars denote the absolute value. Forv 6= 0, the approximation error is defined as:

δ =
|v − vapprox|

|v|
=

∣

∣

∣

∣

v − vapprox
v

∣

∣

∣

∣

=
∣

∣

∣
1−

vapprox
v

∣

∣

∣

Each triad generates a PC matrixM of the size3×3. Let us use A, B, and C to reflect lengths of three
bars. The valueM [1, 2] = 1 representsA = B, M [2, 3] = 1 representsB = C hence the expectation is
A = C but the third estimates is 5. It is reflected by the last bar hence the error is 500%. As assumed,x
can take any arbitrary value and so can the estimation error.For small values ofn, the maximum value of
the error, still acceptable by the eigenvalue-based inconsistency, has been presented in Tab. 3. PC matrix
with triads(1, x, 1) is of a considerable importance and it is analyzed in Section5.

4. Axiomatization of inconsistency

It is generally assumed that it was Saaty who in [17] defined PCmatrix A as consistent if and only if
aij ∗ ajk = aik for i, j, k = 1, 2, ..., n. However, inconsistency was defined and examined before 1977,
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by at least these four studies published between 1939 and 1961: [12, 10, 7, 18]. To our knowledge, no
axiomatization has ever been proposed for the general case of pairwise comparisons matrix with real
positive entries, although it seems that attempts have beenmade for matrices with integer values for
win-tie-loss entries.

The common sense expectations for the inconsistency indicator ii of a triadT = (x, y, z) are:

1. ii = 0 for y = x ∗ z,

2. ii ∈ [0, 1) - by common sense, wan “ideal inconsistency” cannot be achieve,

3. for a consistent triadii(x, y, z) = 0 with xz = y, increasing or decreasingx, y, z results in
increasingii(x, y, z).

The third axiom is crucial for any axiomatization. Without this axiom, an inconsistency indicator
would not make practical sense. For any assumed definition for inconsistency, an inconsistency indicator
of a triadT ′ = (x′, y′, z′) cannot be smaller than ofT = (x, y, z) if it is worse by one of more coor-
dinates, which is what the third axiom is about. That is,ii(x′, y′, z′) ≥ ii(x, y, z). It is a reasonable
expectation that the worsening of a triad, used in the definition of consistency (also in [17]), cannot make
the entire matrix more consistent.
For ii(x, y, z) > 0, there are two cases:

(a) xz < y

(b) xz > y

In case of:

(a) if x′z′ < xz&y′ > y thenii(x, y, z) < ii(x′, y′, z′)

(b) if x′z′ > xz&y′ < y thenii(x, y, z) < ii(x′, y′, z′)

Let us look at the following two examples:

• ii(1.5, 2, 2.5) will increase if 1.5 or 2.5 are increased, since 1.5*2.5 is already greater than 2. On
the other hand, decreasing 2 should also increase the inconsistency.

• ii(1.5, 2.5, 1.2) will increase if 2.5 in increased, since it is greater than 1.5*1.2=1.8, but decreasing
1.5 or 1.2 should also increase inconsistency for the same reason.

Based on the proposed axioms for inconsistency and [13], letus define:

f(x, y, z) = 1−min

{

y

xz
,
xz

y

}

.

It is equivalent to:

f(x, y, z) = 1− e−|ln(
y

xz )|.
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The expression| ln( y
xz )| is the distance of the triadT from 0. When this distance increases, thef(x, y, z)

also increases. It is important to notice here that this definition allows us to localize the inconsistency in
the matrix PC and it is of a considerable importance for most applications.

Another possible definition of the inconsistency has a global character and needs a bit more expla-
nations. LetA = {aij}

n
i,j=1 be a reciprocal positive matrix. The matrixA is consistent if and only if for

any1 ≤ i < j ≤ n the following equation holds:

aij = ai,i+1ai+1,i+2 . . . aj−1,j.

Therefore, the inconsistency indicator ofA can be also defined as:

ii(A) = 1− min
1≤i<j≤n

min

(

aij
ai,i+1ai+1,i+2 . . . aj−1,j

,
ai,i+1ai+1,i+2 . . . aj−1,j

aij

)

It is equivalent to:

ii(A) = 1− max
1≤i<j≤n

(

1− e
−

∣

∣

∣

∣

ln

(

aij

ai,i+1ai+1,i+2...aj−1,j

)
∣

∣

∣

∣

)

Both ii definitions have some advantages and disadvantages. The first definition allows us to find
the localization of the inconsistency. The second definition may be useful when the global inconsistency
is more important. The first definition follows what is adequately described by the idiom: “one bad
apple spoils the barrel”. A hybrid of using two definitions may be a practical solution in applications.
Alternatively, both definitions can be used in a sequence.

5. The analysis of CPC(x, n) matrix

In this section, a pairwise matrix with all 1s except for two corners (called “corner comparisons matrix
or CPC”) is analyzed. Consider the matrixCPC(x, n), with x > 1, defined by

CPC(x, n) =



















1 1 · · · 1 x

1 1 · · · 1 1
...

...
.. .

...
...

1 1 · · · 1 1

x−1 1 · · · 1 1



















∈ Mn×n(R)

By the Perron-Frobenius theorem, the principal eigenvalueλmax corresponds to a unique (up to constant
multiple) eigenvectorw = {wi}

n
i=1 with positive entries. Since the rowsr2, r3 . . . , rn−1 of the matrix

CPC(x, n) are equal the eigenvector,w satisfiesw2 = w3 = . . . = wn−1. After normalization, it may
be assumed that

w = (a, 1, 1, . . . , 1, b).

The eigenvalue equationCPC(x, n)w = λmaxw is reduced to the system of three equations with three
unknownsa, b andλmax.

a+ n− 2 + bx = λmaxa,

a+ n− 2 + b = λmax,
a

x
+ n− 2 + b = λmaxb.
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By solving the system consisting of the first and the last linear equations, relative toa andb, we get

a = (n− 2)
x+ λmax − 1

λ2
max − 2λmax

, b = (n− 2)
x−1 + λmax − 1

λ2
max − 2λmax

.

Substitutinga andb in the second equation by the above expressions (after some transformations), the
following third degree equation forλmax is obtained:

λ3
max − nλ2

max = (n− 2)(x−1 + x− 2). (1)

It can still be transformed that into

λmax − n

n− 1
=

n− 2

n− 1

x−1 + x− 2

λ2
max

.

Since the right hand side is positive, we must haveλmax > n.
Therefore

λmax − n

n− 1
≤

n− 2

n− 1

x−1 + x− 2

n2
. (2)

It has been assumed thatx > 1 thereforex−1 < 1

also
n− 2

n− 1
< 1

hence the following inequality holds:
λmax − n

n− 1
≤

x

n2
. (3)

The inequality (3) has a very important implication. No matter how largex is, there is always such
n that the left hand side of (3) is as small as it can be assumed. So, regardless of the assumed threshold
in [17] (de facto, originally set to 10%), the matrix is acceptable according to the consistency rule set in
[17].

Evidently, the arbitrarily largex in the matrixCPC(x, n) of sizen× n invalidates the acceptability
of this matrix. Hence, by areductio ad absurdum, the soundness of the eigenvalue-based inconsistency
indicator represented by the left hand side inequality (3) must be dismissed.

Example:

Forn = 6 andx = 6:
λmax − n

n− 1
≤

4

5

4 + (1/6)

36
= 0.0925925...

Actually, we can determine numerically thatλmax = 6.406123...
Then

λmax − n

n− 1
= 0.081224...

Now, general reciprocal matrices will be considered. By a careful analysis of [17], the following
lower estimates forλmax for general reciprocal positive matrices are obtained:
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Theorem 1. LetA = {aij}
n
i,j be a reciprocal matrix with positive entries. Then

λmax ≥ n+
1

3n

ii2(A)
3
√

1− ii(A)
,

where

ii(A) = 1− min
i<k<j

min

{

aij
aikakj

,
aikakj
aij

}

.

Proof:
Let w = {wi}

n
i=1 be the eigenvector corresponding to the eigenvalueλmax. By the Perron-Frobenius

theory, we havewi > 0. Thus

λmax wi =

n
∑

j=1

aijwj.

By an easy transformation and the fact thataii = 1 (see [17], pages 237-238), we get

nλmax − n =
∑

1≤i<j≤n

(

aij
wj

wi
+ aji

wi

wj

)

.

This implies

n(λmax − n) =
∑

1≤i<j≤n

(

aij
wj

wi
+ aji

wi

wj
− 2

)

(4)

Let us assume that the maximal inconsistency is attained at the triads < u < t, i.e.

ii(A) = 1−min

{

ast
asuaut

,
asuaut
ast

}

.

Every term in the sum of (4) is nonnegative asx+ x−1 − 2 ≥ 0, for x > 0 andaji = a−1

ij . By reducing
the sum to three terms corresponding to the triads < u < t, we get

n(λmax − n) ≥ asu
wu

ws
+ aus

ws

wu
+ aut

wt

wu
+ atu

wu

wt
+ ast

wt

ws
+ ats

ws

wt
− 6. (5)

Denote
x = asu

wu

ws
, y = aut

wt

wu
, α =

asuaut
ast

.

Then the right hand side of (5) is given by

f(x, y) := x+ x−1 + y + y−1 + α−1xy + αx−1y−1 − 6.

By calculating the partial derivatives off(x, y) and equating them to zero, we can easily determine that
the minimal value off(x, y) is attained for

x = y = α1/3.
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We will consider the caseα ≤ 1, i.e. ii(A) = 1 − α (the other caseα > 1 can be dealt with similarly).
We have

f(x, y) ≥ 3(α1/3 + α−1/3)− 6 = 3α−1/3(1− α1/3)2

= 3α−1/3

(

1− α

1 + α1/3 + α2/3

)2

≥
1

3
α−1/3(1− α)2 =

1

3

ii2(A)
3
√

1− ii(A)
.

Summarizing, we get

n(λmax − n) ≥
1

3

ii2(A)
3
√

1− ii(A)
,

which yields the conclusion. ⊓⊔

Remark. Theorem 1 yields
λmax − n

n− 1
≥

1

3(n − 1)n

ii2(A)
3
√

1− ii(A)
.

Thus for givenn (sayn = 6), the quantity explodes if the indicatorii(A) approaches the value 1.
Another lower estimate forλmax can be obtained. It takes into account the total inconsistency infor-

mation of the matrixA.

Theorem 2. Let T denote the set of all triads in the matrixA andii(t) be the inconsistency indicator of
the triadt, i.e. for t = (i, k, j) with i < k < j, let

ii(t) = 1−min

{

aij
aikakj

,
aikakj
aij

}

.

Then

λmax ≥ n+
1

3n(n− 2)

∑

t∈T

ii2(t)
3
√

1− ii(t)
.

Proof:
Every termauv with 1 ≤ u < v ≤ n belongs ton− 2 triads. Therefore the formula (4) implies

(n− 2)n (λmax − n)

=
∑

i<k<j

[

aik
wk

wi
+ aki

wi

wk
+ akj

wj

wk
+ ajk

wk

wj
+ aij

wj

wi
+ aji

wi

wj
− 6

]

.

By the proof of Theorem 1, we get that forα = min{aikakj/aij , aij/aikakj} andt = (i, k, j) we have

aik
wk

wi
+ aki

wi

wk
+ akj

wj

wk
+ ajk

wk

wj
+ aij

wj

wi
+ aji

wi

wj
− 6

≥
1

3
α−1/3(1− α)2 =

1

3

ii2(t)
3
√

1− ii(t)
.

Hence

(n − 2)n (λmax − n) ≥
1

3

∑

t∈T

ii2(t)
3
√

1− ii(t)
.

⊓⊔
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TheCPC(x, n) matrix in the above example shows that for the eigenvalue-based consistency index
(CI) an error of an arbitrary value is acceptable for the large enoughn (the matrix size). According to
AHP theory, theCPC(x, n) matrix is considered “consistent enough” (or “good enough”) for CI ≤ 0.1,
although it hasn arbitrarily erroneous elements in it. The numbern of the erroneous elements grow to
infinity with the growingn and it invalidates usingCI for measuring the inconsistency.

5.1. The interpretation of the CPC(x, n) analysis

Matrix CPC(x, n) of the size of3× 3 has only one triad:(1, x, 1). Trivially, the only value ofx for this
matrix to be consistent is 1 (x = 1 ∗ 1). Forx = 2.62, we have:

CPC(2.62, 3) =







1 1 2.62

1 1 1

0.381679389 1 1







The principal eigenvalue ofCPC(2.62, 3) is 3.10397 henceCI = 0.051985 and it is less than 10%
of RI = 0.52, hence acceptable due to the fact that the proposed consistency index (CI) is defined in
[17] as:

CI =
λmax − n

n− 1

and the consistency ratio (CR) defined as

CR =
CI

RI

whereRI is the average value ofCI for random matrices and computed as 0.52 (decreased from 0.58 as
stipulated in [17]).

As previously observed,x should be 1, sox = 2.62 gives us 262% error and it is still acceptable
for the eigenvalue-based inconsistency. For matrices3 × 3, RI has been computed as 0.5245 hence
CR < 0.1 for CPC(2.62, 3). The acceptable errors for othern from 3 to 7 have been computed and
presented in Tab. 3

Table 3. Maximal errors acceptable by the eigenvalue-basedinconsistency forCPC(x, n)

n error for (1,x,1)

3 262%

4 417%

5 618%

6 875%

7 1,170%

CPC(x, n) of the sizen by n hasn − 2 triads of this shape:(1, x, 1). All triads are formed from
these matrix elements(aij , aik, ajk) based the consistency condition isaik = aij ∗ ajk. Not only the
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Figure 2. Triad(a, b, c) with the 262% error acceptable by the eigenvalue-based inconsistency forCPC(2.62, 3)

equality does not hold forx > 1 but foraij = ajk = 1 andx = aij ∗ ajk the inaccuracy grows with the
growingx. ForCPC(2.62, 3), it is illustrated by Fig. 2. The question is evident: “Wouldyou consider
such three bars are equal?” and if the answer is not, “why AHP considers such error as acceptable?”

Valuesx can be an arbitrarily large value which creates a problem. Assuming that the exact values
are set toaij = ajk = 1, the valuex is computed asaij ∗ajk = 1 hence the error forx is x/(1∗1) hence
x or x ∗ 100%. For example, forn = 7, x = 4.25 the error is 1,170%. However,x can be 1,000,000%,
or more since in Section 5, the proof has been provided that there is suchn for whichCI ≤ 0.1 hence
acceptable. The 10% threshold, originally set as “the consistency rule” in [17] and later on slightly
decreased for largern but it does not matter for the inequality (3) in Section 5 if itis 10% or any other
fixed value.

According the the results in Section 5, there is always suchn for which the deviation of the principal
eigenvalue fromn is small enough to considerCPC(x, n) matrix acceptable while the arbitrarily large
x hasn− 2 triads with an unacceptably high errorx.

The distance-based inconsistency was introduced in [13] and independently analyzed in [2]. Its
convergence analysis was published in [15]. Evidently, it does not accept big values ofx in triads
(1, x, 1). It specifically postulates to re-examine input data forii > 1/3, hencex > 1.5 is proclaimed to
be suspiciously high and the PC matrix needs to be re-examined.
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Figure 3. Maximal errors acceptable by eigenvalue-based inconsistency forCPC(x, n)

6. The analysis of FPC(x, n) matrix

We have feared that some of the AHP supporters may hold to the last hope by believing that “it is only
one value in theCPC(x, n) matrix” since it hasx in one matrix element (in fact,x−1 in another corner).
However, we have a surprise for them by what we callFPC (the “full” pairwise comparisons matrix or
the PC matrix full ofx). UnlikeCPC(x, n), it has all erroneous triads.

Consider the matrixFPC(x, n), with x > 1, defined by

FPC(x, n) =



















1 x · · · x x

x−1 1 · · · x x
...

...
. . .

...
...

x−1 x−1 · · · 1 x

x−1 x−1 · · · x−1 1



















∈ Mn×n(R)

Letw be the eigenvector corresponding to the principal eigenvalueλmax. Thus

x−1(w1 + . . . + wk−1) + wk + x(wk+1 + . . .+ wn) = λwk

for k = 1, 2, . . . , n.

Let us notice that fork = 1, the first term is missing while fork = n, the last term is missing. By
subtracting equations corresponding tok andk − 1, the following holds:

x−1wk−1 + wk − wk−1 − xwk = λwk − λwk−1
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which gives

wk = wk−1

x−1 − 1 + λ

x− 1 + λ

for k = 2, . . . , n.

hence

wk =

(

x−1 − 1 + λ

x− 1 + λ

)k−1

for k = 1, 2, . . . , n.

Substituting it into the first equation results in

1 + x(w2 + w2
2 + . . .+ wn−1

2 ) = λ

hence

1 + x
wn
2 −w2

w2 − 1
= λ

by using

w2 =
x−1 − 1 + λ

x− 1 + λ

and by transforming the last equation, the following equation is obtained:

(

x−1 − 1 + λ

x− 1 + λ

)n

=
1

x2

therefore

λ =
x− 1

x

x+ x
2

n

x
2

n − 1

Example:

Forx = 2.25 andn = 4, we haveλmax = 25

6

Thus
λmax − n

n− 1
=

25

6
− 4

3
=

1

18
≈ 0.055555556

therefore 225% error is still considered as acceptable by AHP theory forn = 4. The soundness of
entering three inaccurate (by 55.6%) comparisons into the matrix FPC(x, n) and claiming that such
matrix is acceptable is left to the reader for his/her evaluation.
Forx = 2.84 andn = 7, the error increases to 64.79%. These errors although a bit less impressive than
for CPC(x, n) are still by far too high for the estimation lengths of randomly generated bars as it was
demonstrated by a Monte Carlo Study in [14] where a 5% error was reported. The error 284% is bigger
than 262% illustrated in Fig.2. This study considers it unacceptable. The question is if it is reasonable
to consider three bars in Fig.2 as “equal enough”. The only similar equality of this kind, which comes
to our minds is: “All animals are equal, but some animals are more equal than others.” [George Orwell,
Animal Farm].
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7. Conclusions

The presented inconsistency axiomatization is simple, elegant, a considerable step forward and a sound
mathematical foundation for the further PC research. It finally allows us to define proper inconsistency
indicators, regardless of whether or not they are localizing the inconsistency or serve as global indica-
tors of inconsistencies in pairwise comparisons matrices.The distance-based inconsistency definition
localizes the inconsistency and produces correct results.

The eigenvalue-based consistency index (CI) fails to increase with the growing size of the PC matrix
and it has the growing number of triads with each of them having an unacceptable level of inconsis-
tency. As proven in Section 5, AHP thresholds (both old and recently modified) are unable to detect
large quantities of large inaccuracies existing inCPC(x, n) matrices. There is alwaysn, for which
these inaccuracies are lost in the matrix, no matter how large they are. The discussed eigenvalue-based
inconsistency indicator is not precise enough for the detection of individual triads, which turns to be er-
roneous but “averaged” by the eigenvalue processing. It is anticipated that every statistical inconsistency
indicator, including those with roots in the principal eigenvalue, may not be good indicators of the prob-
lems existing in pairwise comparisons. Simply, they do not look deep enough into relationships existing
in cycles of which triads are the most important minimal cycles (as pointed out in this study, one or two
elements cannot create an inconsistency cycle). Hopefully, proponents of other inconsistency indicators
will examine their definition by using the proposed axiomatization. Certainly, getting help from authors
of this study is a vital solution.

During the final stages of editing of our study for publication, the numerical results strongly support-
ing our finding were located in [21] with the following text inthe conclusions:

“In this paper, by simulation analysis, we obtain the following result: as the matrix size
increases, the percent of the matrices with acceptable consistency (CR ≤ 0.1), decrease
dramatically, but, on the other hand, there will be more and more contradictory judgments
in these sufficiently consistent matrices. This paradox shows that it is impossible to find
some proper critical values of CR for different matrix sizes. Thus we argue that Saaty’s
consistency test could be unreasonable.”

It is not a paradox anymore. In this study, the mathematical proof and reasoning for it have been provided.
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