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1. Introduction

In [17], Thurstone proposed ‘‘The Law of Comparative Judgments’’ for pairwise comparisons (for short, PC). However, the
first use of pairwise comparisons is in [5]). Even earlier use of PC is published in [3], but in a more simplified way for voting
(win or loss). The PC theory finds a lot of applications, for example, in transport. An integrated simulation, multivariate
analysis and multiple decision analysis for railway system improvement and optimization is presented in [1] where data
envelopment analysis is used to solve the multi-objective model to identify the best alternatives.

In many cases, we meet the incomplete PC matrices which should be completed in such a way that they become
consistent. The authors of [4] deal with this problem by means of similarity and parametric compromise functions. In
[15], a fitness function is defined as a scalar vector function composed of the common error measure, based on the Euclidean
distance, and a minimum violation error that accounts for no violation of the rank ordering is considered to improve deriving
of the weights.

In this study, we examine the possibility of reconstructing the entire n� n PC matrix from only n� 1 given entries placed
in strategic locations. We call them PC-generators. Before we progress, some terminologies of pairwise comparisons must be
revisited in the next section, since PC theory is still not as popular as other mathematical theories. However, the next section
is definitely not for PC method experts.

2. Pairwise comparisons basics

We define an n� n pairwise comparison matrix simply as a square matrix M ¼ ½mij� such that mij > 0 for every i; j ¼ 1; . . . ;n.
A pairwise comparison matrix M is called reciprocal if mij ¼ 1

mji
for every i; j ¼ 1; . . . ;n (then automatically mii ¼ 1 for every

i ¼ 1; . . . ;n). Let us assume that:
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M ¼

1 m12 � � � m1n
1

m12
1 � � � m2n

..

. ..
. ..

. ..
.

1
m1n

1
m2n

� � � 1

2
66664

3
77775;
where mij expresses a relative quantity, intensity, or preference of entity (or stimuli) Ei over Ej. A more compact and elegant
specification of PC matrix is given in [14] by Kulakowski.

A pairwise comparison matrix M is called consistent (or transitive) if:
mij �mjk ¼ mik;
for every i; j; k ¼ 1;2; . . . ;n.
We will refer to it as a ‘‘consistency condition’’. Consistent PC matrices correspond to the situation with the exact values

lðE1Þ; . . . ;lðEnÞ for all the entities. In such case, the quotients mij ¼ lðEiÞ=lðEjÞ then form a consistent PC matrix. The vector
s ¼ ½lðE1Þ; . . .lðEnÞ� is unique up to a multiplicative constant. While every consistent matrix is reciprocal, the converse is
generally false. If the consistency condition does not hold, the matrix is inconsistent (or intransitive). Axiomatization of incon-
sistency indicators for pairwise comparisons has been recently proposed in [13] and various inconsistency indexes are ana-
lyzed in [2].

The challenge for the pairwise comparisons method comes from the lack of consistency of the pairwise comparisons
matrices, which arises in practice (while as a rule, all the pairwise comparisons matrices are reciprocal). Given an N � N
matrix M, which is not consistent, the theory attempts to provide a consistent n� n matrix M0, which differs from matrix
M ‘‘as little as possible’’.

It is worth to note that the matrix: M ¼ ½v i=v j� is consistent for all (even random) positive values v i. It is an important
observation since it implies that a problem of approximation is really a problem of a norm selection and the distance min-
imization. For the Euclidean norm, the vector of geometric means (equal to the principal eigenvector for the transitive
matrix) is the one which generates it. Needless to say that only optimization methods can approximate the given matrix
for the assumed norm (e.g., LSM for the Euclidean distance, as recently proposed in [7]). Such type of matrices are examined
in [16] as ‘‘error-free’’ matrices.

It is unfortunate that the singular form ‘‘comparison’’ is sometimes used considering that a minimum of three compar-
isons are needed for the method to have a practical meaning. Comparing two entities (stimuli or properties) in pairs is
irreducible, since having one entity compared with itself gives trivially 1. Comparing only two entities (2� 2 PC matrix) does
not involve inconsistency. Entities and/or their properties are often called stimuli in the PC research but are rarely used in
applications.

3. The PC-generators of pairwise comparisons matrix

For a given PC matrix A 2 Mn�nðRÞ consider the set Cn :¼ faij : i < jg. Note that in order to reconstruct the whole
consistent matrix it is enough to know the elements of Cn, as aii ¼ 1 for each i 2 f1; . . . ;ng and aji ¼ 1

aij
for i < j.

Let us call each such set sufficient to reconstruct the matrix A its set of PC-generators.
The set Cn has n2�n

2 elements. However, consistency is a much stronger condition. So, it is obvious that we may reduce this
input set by computing the rest of elements. It is a natural question to ask which minimal subsets of Cn generate A.

Remark 3.1. If B � B0 � Cn and B generates A, then B0 does as well.
Theorem 3.2. There is no ðn� 2Þ-set of PC-generators of A.
Proof. For n ¼ 3 the statement is obvious, as in any matrix:

1 a c
1
a 1 b
1
c

1
b 1

2
4

3
5:
if we only know one of the values a; b or c, we cannot clearly calculate the other two satisfying c ¼ ab.
To continue the induction, let us assume that the assertion holds for each matrix M 2 Mn�nðRÞ. Now consider the matrix:
Anþ1 ¼

1 a12 � � � a1n a1;nþ1
1

a12
1 � � � a2n a2;nþ1

..

. ..
. ..

. ..
.

1
a1n

1
a2n

� � � 1 an;nþ1

1
a1;nþ1

1
a2;nþ1

� � � 1
an;nþ1

1

2
66666664

3
77777775
:
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Notice that in order to calculate the elements of the last column, we need to know at least one of them. On the other hand, if
we know p of them, we can calculate only p� 1 of the elements aij for 1 6 i < j 6 n. Let us assume there is a ðn� 1Þ-set B of
PC-generators of Anþ1. We define a new set B0 :¼ B [ L n R, where R denotes the set of elements of B from the last column, and
L denotes the elements from the previous columns which can be calculated from the elements of R. Now B0 is a ðn� 2Þ-set of
PC-generators of the matrix An resulting from Anþ1 by removing the last row and column.

An 2 Mn�nðRÞ, which contradicts the inductive assumption. h
Remark 3.3. Given input values ai;iþ1 (for i ¼ 1; . . . ;n� 1) located above the main diagonal, from the consistency condition
we can reconstruct the entire matrix
A ¼

1 a12 � � � a1n

1
a12

1 � � � a2n

..

. ..
. ..

. ..
.

1
a1n

1
a2n

� � � 1

2
666664

3
777775
;

using the formula
aij ¼
Yj�1

k¼i

ak;kþ1; ð1Þ
for j > i.
It is worth mentioning that the above n� 1 values are not the only values generating the entire matrix. The following

theory is provided for finding the other minimal sets of PC-generators.

Remark 3.4. There is a mutual relevance between each set B � Cn and an undirected graph GB with n vertices:
aij 2 B() there is an edge i� j in GB:
Lemma 3.5. If we know k edges of any subtree of GB, then we are able to compute kþ 1
2

� �
of elements of Cn.

Proof. For k ¼ 1 the statement is obvious, as 1þ 1
2

� �
¼ 1.

To proceed with induction, let us assume that the statement is true for k. Take a tree D with kþ 2 vertices
x1; . . . ; xkþ2 2 VðDÞ and kþ 1 edges. Remove any leaf xl 2 VðDÞ together with the edge xm � xl, joining the leaf with the tree.

We get a new tree D0 with k edges. From the inductive assumption, we are able to calculate kþ 1
2

� �
of elements of Cn.

Now, when we give the removed edge back, we notice that for every vertex xj 2 VðDÞ n flg there is a path
xj � xp1

� � � � � xps
� xl joining xj with xl and we can compute ajl ¼ ajp1

� ap1p2
� . . . � apsl. These are kþ 1 new elements and

altogether we know kþ 1
2

� �
þ kþ 1 ¼ kþ 2

2

� �
of elements of Cn. h

We can now formulate the necessary and sufficient condition for minimal sets of PC-generators.

Theorem 3.6. Let us assume B � Cn is a ðn� 1Þ-set. Then B generates matrix A () GðBÞ is a tree.
Proof. Take a set B of PC-generators of matrix A. Let us assume GðBÞ is not a tree. If so, it must contain a cycle
xk1 � xk2 � � � � � xks � xk1 . When we remove the edge xk1 � xks the relevant ðn� 2Þ-set still generates A, as
ak1 ;ks ¼ ak1 ;k2 � . . . � aks�1 ;ks . Thus, we get a contradiction with Theorem 3.2.

The reverse implication follows straight from Lemma 3.5 for k ¼ n� 1. h
Corollary 3.7. There are nn�2 minimal sets of PC-generators of A.
Proof. This is an immediate consequence of the Cayley’s formula for the number of trees on n vertices. h

Although there are many combinations of n� 1 values generating the entire PC matrix, the values mi;iþ1 are the most
important of all combinations since they express this sequence:
E1=E2; E2=E3; . . . ; En�2=En�1; En�1=En: ð2Þ
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Let us call the above n� 1 values as PC principal generators (PCPGs). For matrix An, the PCPGs are located above the main
diagonal and are as follows:
a1;2; a2;3; . . . ; an�1;n:
Let us invent our own handicapping. Handicapping, in sports and games, is the practice of assigning advantage through
scoring compensation or other advantage given to different contestants to equalize the chances of winning. The same term
also applies to the various methods for computing advantages.

Entities 1 and n occurs in (2) only once. Any other entity, 2 to n� 1, occurs twice. Since the highest frequency is 2, it is fair
to add 1 to E1 and En to compensate for only one occurrence and count the maximum number of occurrences of an entity to
compensate other entities. We also define the total handicapping as the total of all compensations.

By the frequency f ði;BÞ of an entity i 2 f1; . . . ;ng in a set B � Cn we understand the cardinality of set
Bi :¼ fajk 2 B : j ¼ i _ k ¼ ig:
Let OðBÞ denote the set fi : Bi – ;g. We define the total handicapping of the set B � Cn as
hðBÞ :¼
X

i2OðBÞ
ðmax

j2OðBÞ
f ðj;BÞ � f ði;BÞÞ:
For example, the total handicapping would be ðn� 2Þðn� 1Þ for all PC-generators in the first raw since E1 occurs n� 1 times.
The rest of entities occur only once hence they need to be handicapped by n� 2.

Remark 3.8. The frequency of an entity i in the set B is equal to the degree of vertex i in graph GB:
f ði;BÞ ¼ degGB
ðiÞ:
Remark 3.9. OðBÞ is the set of vertices of GB with a positive degree.
Remark 3.10. hðBÞ counts the sum of differences between the maximal degree of a vertex in GB and the degrees of the rest of
vertices.
Corollary 3.11. hðBÞ ¼ 0) graph GB is regular (all its vertices have the same degree).
Theorem 3.12. If n > 1 and B is a ðn� 1Þ-set of PC-generators of A, then

1. hðBÞ ¼ 0) n ¼ 2:
2. hðBÞ – 1:
3. hðBÞ ¼ 2) GB is a path connecting all vertices.
Proof. From Theorem 3.6, it follows that GðBÞ is a tree. Thus, it has n vertices and n� 1 edges. Notice that to obtain the
number of edges one needs to sum up the degrees of vertices and divide by two (each edge is counted twice).

If hðBÞ ¼ 0, then GðBÞ has n vertices of the same degree k. Hence,
n� 1 ¼ nk
2
) 2n� 2 ¼ nk) nð2� kÞ ¼ 2) n ¼ 2:
If hðBÞ ¼ 1, then GðBÞ has n� 1 vertices of the same degree k and one of degree k� 1. Hence,
n� 1 ¼ ðn� 1Þk
2

þ kþ 1
2
¼ nk� 1

2
) 2n� 2 ¼ nk� 1) ð2� kÞn ¼ 1) n ¼ 1;
which is a contradiction.
If hðBÞ ¼ 2, then there are two cases. The first one with n� 1 vertices of degree k and one vertex of degree k� 2. Hence,
n� 1 ¼ ðn� 1Þk
2

þ k� 2
2
¼ nk� 2

2
) 2n� 2 ¼ nk� 2) k ¼ 2;
and it follows that there is one vertex of degree 0, so graph GB is disconnected, which is a contradiction.
For a case with n� 2 vertices of degree k and two vertices of degree k� 1, we have:
n� 1 ¼ ðn� 2Þk
2

þ 2
k� 1

2 ¼ nk� 2
2

) 2n� 2 ¼ nk� 2) k ¼ 2;
and it follows that GB is a path connecting all vertices. h
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Corollary 3.13. For n P 2 there are n!
2 ðn� 1Þ-sets of PC-generators of A with the minimal total handicapping.
Proof. For n ¼ 2, the statement is obvious. For n P 3 from Theorem 3.12, we know that it suffices to count all the paths con-
necting all vertices. Each such path is of the form pð1Þ � pð2Þ � � � � � pðnÞ, where p is a permutation of the set f1; . . . ;ng. How-
ever, from pð1Þ � pð2Þ � � � � � pðnÞ and pðnÞ � pðn� 1Þ � � � � � pð1Þ, we obtain the same tree hence the number of
permutations must be divided by two. h
Example 3.14. Consider n ¼ 4 and the matrix
Table 1
3-subse

fa; d

fa; e
fa; b
fa; b
fa; c
A ¼

1 a b c
1
a 1 d e
1
b

1
d 1 f

1
c

1
e

1
f 1

2
66664

3
77775:

� �

The set C4 ¼ fa; b; c; d; e; fg consists of 42�4

2 ¼ 6 elements, so it has 6
3 ¼ 20 3-subsets listed in Table 1. From Remark 3.4, we

know that they are related to some graphs. They are listed in Fig. 1 and their nodes are labeled in Fig. 2.
The last four subsets are triads, so they are not PC-generators of A. The graphs related to them are cycles.
According to Corollary 3.7, there are 44�2 ¼ 16 minimal sets of PC-generators of A and they are the first 16. The graphs

related to them are obviously trees. From Corollary 3.13, we conclude that we have 4!
2 ¼ 12 sets of PC-generators of A

minimizing the total handicapping and they are the first 12. The related graphs are paths.
It is worth noticing that the first subset is the set of PGs.
The strategic importance of PGs, based on the total handicapping, places them on the diagonal above the main diagonal. It

is important to notice that PGs are always there and it is up to us to decide whether or not we use them for reconstructing
the entire consistent PC matrix (with the possible increased error) or enter the remaining entries into PC matrix with the
possibility of inconsistency in triads. As pointed out in [11,6,8,9,10,12], nothing is carved in stone and even reciprocity
can be relaxed for the blind wine and other types of tasting. Reciprocity may also not be guaranteed when data are collected
over the Internet from different sources or individuals. For PGs sufficiently accurate, the PC matrix reconstruction is a vital
possibility.

4. An algorithm for the reconstruction of a PC matrix from a minimal set of PC-generators

Assuming that we know the ðn� 1Þ� set B � Cn � A, we can reconstruct the entire matrix A using an algorithm described
below.

For given PGs a11; . . . ; ann, we can compute each aij for i < j from Remark 3.3. On the other hand, if we know a ðn� 1Þ-set B
of different values of matrix A we can apply the log function to the formula (1) and we substitute xk :¼ log ak;kþ1 then we get
the system of linear equations
log aij ¼
Xj�1

k¼i

xk; aij 2 B:
If B generates A, then this system has a unique solution and we may calculate ak;kþ1 ¼ 10xk .
This leads us to the following algorithm:
INPUT:

� M 2 Mðn� 1;3Þ representing the set B of PC-generators of A.
� ðM½i;1�;M½i;2�Þ correspond to the coordinates of the ith element of B.
� M½i;3� corresponds to the value of the ith element of B.

OUTPUT:
The consistent PC matrix A 2 Mðn;nÞ reconstructed from A.
ts for n ¼ 4.

; fg fa; c; dg fa; c; fg fc; d; fg

; fg fa; b; fg fb; c; dg fc; d; eg
; eg fb; c; eg fb; e; fg fb; d; eg
; cg fa; d; eg fb; d; fg fc; e; fg
; eg fa; b; dg fb; c; fg fd; e; fg



Fig. 1. All possible combinations of 20 three PC-generators.
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ALGORITHM:

1. Construct graph GB:
GB :¼ ;;
for i :¼ 1 to n� 1 GB :¼ GB [ fM½i;1� �M½i;2�g;

2. Check if GB is a tree (using DFS algorithm): if not then write (‘B does not generate A’) and exit;
3. Solve a linear system
XM½i;2��1

k¼M½i;1�
xk ¼ logðM½i;3�Þ; i ¼ 1; . . . ;n� 1:

4. Calculate elements of A:

for k :¼ 1 to n A½k; k� :¼ 1;
for k :¼ 1 to n� 1 A½k; kþ 1� :¼ 10xk ;
for k :¼ 1 to n� 1

for l :¼ kþ 2 to n A½k; l� :¼
Ql�1

m¼kA½m;mþ 1�
for k :¼ 1 to n� 1

for l :¼ kþ 1 to n A½l; k� :¼ 1
A½k;l�

Example 4.1. Let us consider the PC matrix A, from the Example 3.14, and assume that we know the values from the set
B ¼ fa; b; eg. Thus, the input matrix is:
Fig. 2. Nodes for all PC-generators in Fig. 1.
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M ¼
1 2 a

1 3 b

2 4 e

2
64

3
75:
Apply the algorithm:

1. We obtain the graph GB with 4 vertices
1; 2; 3; 4;

and 3 edges

1� 2; 1� 3; 2� 4:

2. We assure that GB is a tree and continue.
3. We solve the linear system8
x1 ¼ log a

x1 þ x2 ¼ log b

x2 þ x3 ¼ log e

><
>: ;

and we get

x1 ¼ log a

x2 ¼ log b� log a ¼ log b
a

x3 ¼ log e� logbþ log a ¼ log ae
b

8><
>: :

4. We calculate the missing elements of the output PC matrix A:
A ¼

1 a b ae
1
a 1 b

a e
1
b

a
b 1 ae

b
1
ae

1
e

b
ae 1

2
66664

3
77775:
Remark 4.2. The complexity of the algorithm is Oðn3Þ.
Proof. Steps 1 and 2 take OðnÞ operations. The complexity of step 3 is Oðn2Þ and of step 4 is Oðn3Þ. h

Notice that the assumption that the number p of input entries is equal to n� 1 may not be satisfied. We may have less or
more data and still use the slightly modified algorithm. We only change steps 1 and 2:

1. Construct graph GB:
GB :¼ ;;
for i :¼ 1 to p GB :¼ GB [ fM½i;1� �M½i;2�g;

2. Replace GB by its spanning tree (which is at most a ðn� 1Þ-set) received from DFS algorithm.
if GB has less than n� 1 edges then write (‘B does not generate A’) and exit.

5. Conclusions

In this study, we have demonstrated that we are able to use less than all n � ðn� 1Þ=2 pairwise comparisons to reconstruct
a consistent matrix. In fact, the minimum of n� 1 PC-generators is sufficient. This may be very useful, provided that they
represent more accurate values than the rest of the PC matrix. Another possible application of the suggested algorithm is
a case of the missing data in the PC matrix. The entire PC can be reconstructed from the PCPGs located above the main diag-
onal. Together with the preliminary sorting of entities, it is a quick and simple method of getting weights. The problem is
that the accumulated errors grow fast when we ‘‘walk away’’ from the main diagonal towards the upper right corner. In fact,
for n ¼ 7 and 20% error in the PCPGs, nearly 200% is accumulated in the upper right corner. The proposed algorithm for
reconstructing the entire matrix from the principal PC-generators is easy to implement, even in Gnumeric (or in MS Excel).
In addition, the reconstructed values (accurate or not) are consistent. In this study, we only consider the multiplicative var-
iant of PC, which is based on ‘‘how many times?’’, while the additive version of pairwise comparisons (‘‘by how much?’’) was
recently analyzed in [18]. The additive PC method utilizes a different type of inconsistency (not addressed here). Certainly
more research is needed.

An interesting problem is how to reconstruct the matrix from a set B containing more than n� 1 elements. In such a case,
the corresponding graph GB must have at least one cycle, so we may process the redundant information. There is a unique
extension of B to a consistent matrix A if the condition:
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ai1 i2 � ai2 i3 � . . . ais�1 is � aisi1 ¼ 1
is satisfied for each path (including cycles) of GB. Thus, it is sufficient to take any spanning tree T of GB and reconstruct A from
T, which is a ðn� 1Þ-set. Unfortunately, there will be multiple solutions corresponding to various ðn� 1Þ-subsets of B if the
consistency condition is not satisfied.

The problem of selecting the resulting PC matrix is an interesting challenge for a separate publication. An ad hoc solution
would be the choice of the ðn� 1Þ-subset of B, minimizing the total handicapping. Another approach is to use the HRE
algorithm, introduced in [14]. In many cases, the application domain (e.g., medical data analysis) may have its own
requirements to follow.
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