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The mathematical elegance of orthogonalization and its universal use in most applied sciences has
been the motivating factor for this study. However, the finding of this study that approximations
depend on the inner product assumed, is of considerable importance.

Keywords: pairwise comparisons, inconsistency, approximation, inner product, orthogonal basis

1. Introduction

The growing number of various orthogonalization approaches in [1, 2, 3, 4] supports the importance of
orthogonalization in various computer science applications. Pairwise comparisons allow us to express
assessments of many entities (especially, of the subjective nature) into one value for the use in the
decision making process. Pairwise comparisons have been used since the late years in the 13th century
by Llull for conducting the better election process (as stipulated in [5]). However, the ineffability of
pairwise comparisons comes from decision making which must have been made by our ancestors
during the Stone Age. Two stones must have been compared to decide which of them fit for the
purpose. It could be for a hatchet, a gift, or a decoration.

Pairwise comparisons matrices can be transformed by a logarithmic mapping into a linear space
and the set of consistent matrices into its subspace. The structure of a Hilbert space is obtained by
using an inner product. Such a space is complete with respect to the norm corresponding to the
inner product. In such a space, we may use orthogonal projections as a tool to produce a consistent
approximation of a given pairwise comparison matrix.

Structure of the paper

A gentle introduction to pairwise comparisons is provided in Section 2. Section 3 discusses the prob-
lem of approximation of an inconsistent PC matrix by a consistent PC matrix using Frobenius inner
product on the space of matrices. Other inner products are discussed in Section 4. In Section 5 the
dependence of an optimal priority vector on the choice of an inner product on the space of pairwise
comparison matrices has been proved. The Conclusions are self explanatory.

2. Pairwise comparisons matrices

In this subsection, we define a pairwise comparisons matrix (for short, PC matrix) and introduce some
related notions. Pairwise comparisons are traditionally stored in a PC matrix. It is a square n×nmatrix
M = [mij ] with real positive elements mij > 0 for every i, j = 1, . . . , n, where mij represents a
relative preference of an entity Ei over Ej as a ratio. The entity could be an object, attribute of it,
abstract concept, or a stimulus. For most abstract entities, we do not have a well established measure
such as a meter or kilogram. “Software safety” or “environmental friendliness” are examples of such
entities or attributes used in pairwise comparisons.

When we use a linguistic expression containing ”how many times”, we process ratios. The lin-
guistic expression ”by how much”, ”by how much percent” (or similar) gives us a relative difference.
Ratios often express subjective preferences of two entities, however, it does not imply that they can be
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obtained only by division. In fact, equalizing the ratios with the division (e.g., Ei/Ej), for pairwise
comparisons, is in general unacceptable. It is only acceptable when applied to entities with the existing
units of measure (e.g., distance). However, when entities are subjective (e.g., reliability and robustness
commonly used in a software development process as product attributes), the division operation has
no mathematical meaning although we can still consider which of them is more (or less) important
than the other for a given project. The use of the symbol ”/” is in the context of ”related to” (not the
division of two numbers). Problems with some popular customization of PCs have been addressed in
[6]. We decided not to address them here.

A PC matrix M is called reciprocal if mij = 1
mji

for every i, j = 1, . . . , n. In such case, mii = 1

for every i = 1, . . . , n.
We can assume that the PC matrix has positive real entries and is reciprocal without the loss of

generality since a non reciprocal PC matrix can be made reciprocal by the theory presented in [7].
The conversion is done by replacing aij and aji with geometric means of aij and aji (√aijaji). The
reciprocal value is 1√

aijaji
.

Thus a PC matrix M is the n× n-matrix of the form:

M =


1 m12 · · · m1n

1
m12

1 · · · m2n

...
...

...
...

1
m1n

1
m2n

· · · 1

 .

Sometimes, we write that M ∈ PCn in order to indicate the size of a given PC matrix.

2.1. The Geometric Means Method

The main goal to use a pairwise comparison matrix is to obtain the so called priority vector. The
coordinates of this vector correspond to the weights of alternatives. If we know the priority vector, we
can set alternatives in order from the best to the worst one.

In the Geometric Means Method (GMM) introduced in [8] the coordinates of the vector are calcu-
lated as the geometric means of the elements in rows of the matrix:

vi = n

√√√√ n∏
j=1

aij . (1)

The above vector is the solution of the Logarithmic Least Square Method.

2.2. Triads, transitivity, and submatrices of a PC matrix

One of the fundamental problems in pairwise comparisons is the inconsistency. It takes place when
we provide, for any reason, all (hence supernumerary) comparisons of n entities which is n2 or n(n−1)2
if the reciprocity is assumed and used to reduce the number of entered comparisons. The sufficient
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number of comparisons is n − 1, as stipulated in [9], but this number is based on some arbitrary
selection criteria of the minimal set of entities to compare. In practice, we have a tendency to make
all n(n− 1)/2 comparisons (when reciprocity is assumed which is expressed by mij = 1

mji
property

also not always without its problem). Surprisingly, the equality x/y = 1
y/x does not take place even

if both x 6= 0 and y 6= 0. For example, the blind wine testing may result in claiming that x is better
than y and y is better than x or even that x is better than x which is placed on the main diagonal in a
PC matrix M , expressing all pairwise comparisons in a form of a matrix.

The basic concept of inconsistency may be illustrated as follows. If an alternative A is three times
better than B, and B is twice better than C, than A should not be evaluated as five times better than
C. Unfortunately, it does not imply that A to C should be 3 · 2 hence 6, as the common sense may
dictate, since all three assessments (3, 5, and 2) may be inaccurate and we do not know which one
of them is or not incorrect. Inconsistency is sometimes mistakenly taken for the approximation error
but it is incorrect. For example, triad T = (3, 5, 2) can be approximated by Tapprox(1, 1, 1) with 0
inconsistency but we can see that such approximation is far from optimal by any standard. So, the
inconsistency can be 0 yet the approximation error can be different than 0 and of arbitrarily large
value.

2.3. Multiplicative variant of pairwise comparisons

Definition 2.1. Given n ∈ N, we define

T (n) = {(i, j, k) ∈ {1, . . . , n} : i < j < k}

as the set of all PC matrix indexes of all permissible triads in the upper triangle.

Definition 2.2. A PC matrix M = [mij ] is called consistent (or transitive) if, for every (i, j, k) ∈
T (n) :

mikmkj = mij . (2)

Equation (2) was proposed a long time ago (in 1930s) and it is known as a ”consistency condition”.
Every consistent PC matrix is reciprocal, however, the converse is false in general. If the consistency
condition does not hold, the PC matrix is inconsistent (or intransitive). In several studies, conducted
between 1940 and 1961 ([10, 11, 12, 13]) the inconsistency in pairwise comparisons was defined and
examined.

Inconsistency in pairwise comparisons occurs due to superfluous input data. As demonstrated in
[9], only n − 1 pairwise comparisons are really needed to create the entire PC matrix for n entities,
while the upper triangle has n(n − 1)/2 comparisons. Inconsistencies are not necessarily ”wrong”
as they can be used to improve the data acquisition. However, there is a real necessity to have a
”measure” for it.

Lemma 2.3. If a PC matrix M = [mij ]
n
i,j=1 is consistent, then

mij =
ωi
ωj

for all i, j = 1, 2, . . . , n

where ω1 > 0 is arbitrary and ωj = ω1
m1j

for every j = 2, 3, . . . , n.
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Proof:
By the definition of ωj and consistency of M one gets

m1j =
ω1

ω1/m1j
=
ω1

ωj

and

mij =
mi−1,j
mi−1,i

=
ωi−1/ωj
ωi−1/ωi

=
ωi
ωj
.

whenever 1 < i ≤ n. ut

It is easy to observe that the setMn = (Mn, ·) of all consistent PC matricesM is a multiplicative
subgroup of the group of all PC n × n-matrices endowed with the coordinate-wise multiplication
A · B = [aijbij ] , where A = [aij ] and B = [bij ]. Its representation in Rn consists of all priority
vectors υ (M) = (ω1, ω2, . . . , ωn) , defined uniquely as in Lemma 2.3, up to a multiplicative constant
ω1 > 0. In the following we use priority vectors normalized by the condition ω1 = 1, unless otherwise
stated.

2.4. Additive variant of pairwise comparisons

Instead of a PC matrix M = [mij ] with mij ∈ R∗+, the set of positive real numbers considered with
multiplication, we can transform entries of M by a logarithmic function and get a matrix A = [aij ] =
[log mij ] . Since a PC matrix M is reciprocal, it follows that it is anti-symmetric, i.e.

aij = −aji for every i, j = 1, 2, . . . , n.

Moreover, if M is consistent then A = log M satisfies the condition of additive consistency:

aik + akj = aij for every (i, j, k) ∈ T (n) ,

which yields the following well-known representation.

Lemma 2.4. If an anti-symmetric matrix A = [aij ]
n
i,j=1 is additively consistent, then

aij = σi − σj for all i, j = 1, 2, . . . , n,

where σ1 is arbitrary and σj = σ1− a1j for every j = 2, 3, . . . , n.

In view of this representation, the set An = (An,+) of all additively consistent matrices is an
additive subgroup of all n × n- matrices, whenever it is endowed with the coordinatewise matrix
addition A+B = [aij+bij ] of A = [aij ] and B = [bij ]. It is a one-to-one image of the multiplicative
group Mn = (Mn, ·) by the group isomorphism A = log M = [log mij ] . The inverse group
isomorphism is clearly given by the formula M = exp A = [exp aij ] . Moreover, the additive priority
vector υ (A) = (σ1, σ2, . . . , σn) of A satisfies υ (A) = log υ (M) , where σ1 = logω1 is supposed
to be arbitrary additive constant. In particular, it is said to be normalized if σ1 = 0. Here and in the
following matrix functions log M = [log mij ] and exp A = [exp aij ] are always understood in the
coordinate- wise sense.
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3. Approximation by projections

Numerous heuristics have been proposed for approximations of inconsistent pairwise comparisons
matrices by consistent pairwise comparisons matrices. Geometric means (GM) of rows is regarded as
dominant. Some mathematical evidence, to support GM as the method of choice, was also provided
in [14]. [15] shows that orthogonal projections have a limit which is GM (to a constant). [16] demon-
strates that the inconsistency reduction algorithm based on the orthogonal projections converges very
quickly for practical applications. The proof of inconsistency convergence was outlined in [17] and
finalized in [18]. Axiomatization of inconsistency still remains elusive. Its recent mutation in [19] has
a deficiency (the monotonicity axiom incorrectly defined).

3.1. Space of consistent matrices

Let K= R or C. Let M (n,K) be the set of all n × n-matrices with entries from the field K, and let
C =Mn ⊂ M (n,K) be the set of all consistent n × n-matrices with entries from the field K. We
consider M (n,K) as a K−linear space with addition of matrices and multiplication by numbers from
the field K, clearly dimK M (n,K)= n2 and the unit matrices

Eij =
[
ei,jrs
]n
r,s=1

, i, j = 1, 2, . . . , n,

form a basis in M (n,K) , where ei,jrs is equal to 1, if r = i and s = j, and otherwise 0.

In the linear space M (n,K) one can define the Frobenius inner product as follows. For all
A = [aij ] , B = [bij ] ∈M (n,K) ,

〈A,B〉F =
n∑
i=1

n∑
j=1

aij b̄ij .

In this Section we recall results from [20].

Theorem 3.1. The set C is a linear subspace of M(n,K).

Proof:
Let A = [aij ], B = [bij ] ∈ C, that is

aik + akj = aij and bik + bkj = bij .

Let C = [cij ] = A+B, then

cik + ckj = (aik + bik) + (akj + bkj) = (aik + akj) + (bik + bkj) = aij + bij = cij .

Hence, C ∈ C.

Let α ∈ K and A ∈ C. It is clear that αA ∈ C. ut

Theorem 3.2. The subspace C ⊂ M(n,K) has dimension n− 1 over K.
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Proof:
By applying the consistency condition, all elements of the matrix A = [aij ] can be generated by n− 1
elements ak,k+1 for k = 1, . . . , n− 1, i.e. by the second diagonal, that is diagonal directly above the
main diagonal (see [9]). ut

Theorem 3.3. ([20, Proposition 1])
The following set of n− 1 matrices constitutes a basis of C :

Bk = [bkij ], where bkij =


1, for 1 ≤ i ≤ k < j ≤ n,
−1, for 1 ≤ j ≤ k < i ≤ n,

0, otherwise,

where k = 1, . . . n− 1.

Remark 3.4. For the standard inner product (i.e. Frobenius), an example of approximation of a 4× 4
inconsistent matrix as a projection onto C is given in [20].

3.2. Approximation by a consistent matrix

Suppose that we have a PC matrix A ∈ M (n,K) \C, i.e. A is inconsistent. Our aim is to find a
consistent metric projection AC of A onto the set C = An orMn with respect to norm ‖·‖ induced
by an inner product 〈·, ·〉, i.e. a nonlinear mapping AC : M (n,K) 3 A 7→ Aapprox ∈ C such that the
distance of A to C

dist (A, C) = infB∈C ‖A−B‖ = ‖A−Aapprox‖ .

is attained by the matrix B = Aapprox.

In the additive case C = An metric projection AAn coincides with the orthogonal projection
Aproj : A 7→ Aapprox of M (n,K) onto the (n− 1)-linear subspace An, which is characterized by
the well-known orthogonality condition

A−Aapprox⊥ An.

This condition enables to compute the orthogonal projection Aproj much more effectively than its
nonlinear multiplicative counterpart MMn : M 7→ Mapprox. Therefore, it was proposed [8, 15] to
linearize the process of determining metric projections for practical applications. It was achieved
by introducing a new concept of linearized consistent approximations to estimate nonlinear metric
projections. For the simplicity, in the following the symbol Mapprox will be also used to denote these
linearized consistent approximations. It would not lead to misunderstanding, since we shall always
restrict our attention to the linearized case, unless otherwise stated.

Definition 3.5. Let M ∈M (n,K) \Mn be a PC inconsistent matrix.
A consistent approximation Mproj : M 7→Mapprox of M ontoMn is defined in the following way:

1. we construct the matrix A = log M,
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2. we find the orthogonal projection Aapprox of A onto the (n− 1)-dimensional subspace C =
logMn .

3. we set Mapprox = exp (Aapprox) .

In short, we define Mapprox = exp
[
(log M)approx

]
.

3.3. Orthogonalization

In order to simplify calculation in the examples below, we would like to have orthogonal basis for C.
We produce such a basis by the Gram-Schmidt process. Namely, let V be an n-dimensional vector
space over K with an inner product 〈·, ·〉 and B1, . . . , Bn be its basis. We construct an orthogonal
basis E1, . . . , En as follows:

E1 =B1,

E2 =B2 −
〈E1, B2〉
〈E1, E1〉

E1,

E3 =B3 −
〈E1, B3〉
〈E1, E1〉

E1 −
〈E2, B3〉
〈E2, E2〉

E2,

. . . = . . .

En =Bn −
n−1∑
j=1

〈Ej , Bn〉
〈Ej , Ej〉

Ej .

(3)

Example 3.6. Consider an inconsistent PC matrix M in the multiplicative variant:

M =

 1 e2 e7

e−2 1 e3

e−7 e−3 1

 . (4)

Its priority vector v(M) obtained by (1) is

v(M) =

 e3

e
1
3

e−
10
3

 . (5)

Taking natural logarithms, we switch to the additive PC matrix variant and get the following additive
PC matrix:

A =

 0 2 7

−2 0 3

−7 −3 0

 .
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We need to find Aproj, the projection of A onto C. By Theorem 3.2, we have that dimR C = 2. By
Theorem 3.3, we get a basis of the linear space of consistent matrices C :

B1 =

 0 1 1

−1 0 0

−1 0 0

 and B2 =

 0 0 1

0 0 1

−1 −1 0

 .
Evidently, 〈B1, B2〉F = 2. Therefore, we have to apply Gram-Schmidt process of orthogonalization
(3). If E1, E2 denotes an orthogonal basis of C, then

E1 =

 0 1 1

−1 0 0

−1 0 0

 and E2 =

 0 −1
2

1
2

1
2 0 1

−1
2 −1 0

 .
Our goal is to find Aproj = ε1E1 + ε2E2, that is to find coefficients ε1 and ε2 such that for every
C ∈ C, 〈A−Aproj, C〉F = 0 which is equivalent to solving:

〈A− ε1E1 − ε2E2, E1〉F =0,

〈A− ε1E1 − ε2E2, E2〉F =0.

Since E1 and E2 are orthogonal, we get a system of linear equations:

〈A,E1〉F − ε1〈E1, E1〉F =0,

〈A,E2〉F − ε2〈E2, E2〉F =0.

By computing Frobenius inner products, we get the following equation:

18− 4ε1 =0,

11− 3ε2 =0.

By solving the above equations for ε1, ε2, we get ε1 = 9
2 and ε2 = 11

3 . Thus,

Aproj = Aapprox,F =
9

2
E1 +

11

3
E2 =

 0 8
3

19
3

−8
3 0 11

3

−19
3 −11

3 0

 .
Finally, we get a consistent approximation for M,

Mapprox,F =

 1 e
8
3 e

19
3

e−
8
3 1 e

11
3

e−
19
3 e−

11
3 1

 ∈ C.
Notice that the priority vector v(Mapprox,F) coincides with v(M) given by (5).
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4. Other inner products on M(n,K)

The standard (Frobenius) inner product on the linear space M(n,K) is defined by:

〈A,B〉F = Tr(B∗A). (6)

The above inner product is exactly the Frobenius inner product defined in previous section, and it
defines the Frobenius norm in a usual way by:

‖A‖2F = 〈A,A〉F =
n∑
i=1

n∑
j=1

|aij |2.

In [21] the following result is mentioned:

Proposition 4.1. For every m ∈ N and positive semi-definite matrices Xi, Yi, i = 1, . . . ,m, the
following function:

〈A,B〉∗ = Tr

(
m∑
i=1

B∗XiAYi

)
(7)

defines an inner product in M(n,K).

Proof:
All properties of an inner product follow from the following equation:

〈A,B〉∗

= Tr

(
m∑
i=1

B∗XiAYi

)
= TrB∗

(
m∑
i=1

XiAYi

)
=

〈
m∑
i=1

XiAYi, B
∗

〉
F

.

ut

Example 4.2. Consider the following four matrices in the space M(3,R) :

X1 =

1 1 2

1 2 3

2 3 6

 , X2 =

2 1 1

1 2 1

1 1 5

 , Y1 =

2 3 2

3 7 3

2 3 5

 , Y2 =

5 2 1

2 5 1

1 1 1

 .
By applying Sylvester’s criterion in [22], it is easy to see that they are positive semi-definite. Evidently,
they are symmetric hence Hermitian.

Let
A(A) = A{Xi,Yi|i=1,2}(A) = X1AY1 +X2AY2.

Define
〈A,B〉∗ = 〈A(A), B〉F.

By Proposition 4.1, 〈·, ·〉∗ is an inner product in M(n,R).
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Example 4.3. Consider 3 × 3 matrices B1, B2 with real entries computed by the formula in Theo-
rem 3.3 (see Example 3.6 for details). Evidently, B = {B1, B2} is a basis for C ⊂ M(3,R). By
applying Gram-Schmidt process (3) with the inner product from Example 4.2 to the basis B, we get
an orthogonal basis E = {E1, E2} for C in 〈·, ·〉∗.

The above transformations imply that 〈E1, B2〉∗ = 〈A(E1), B2〉F. Since

A(E1) =

 −5 9 4

−17 −5 −3

−35 −13 −6

 ,
we have

〈E1, B2〉∗ = 49 and 〈E1, E1〉∗ = 65.

By equations (3), we get

E1 =

 0 1 1

−1 0 0

−1 0 0

 and E2 =

 0 −49
65

16
65

49
65 0 1

−16
65 −1 0

 =
1

65

 0 −49 16

49 0 65

−16 −65 0

 .
Example 4.4. Take the following additive PC matrix:

A =

 0 2 7

−2 0 3

−7 −3 0

 .
This is the PC matrix from Example 3.6. Next, we compute the orthogonal (with respect to the inner
product from Example 4.2) projection onto the space C. For it, we need to solve a system of linear
equations for ε1 and ε2:

〈A,E1〉∗ − ε1〈E1, E1〉∗ =0,

〈A,E2〉∗ − ε2〈E2, E2〉∗ =0.
(8)

We get

A(E2) = − 1

65

 570 1, 710 36

226 1, 234 −650

1, 930 5, 050 1, 006

 .
We can also utilize some computation conducted in the previous example and by using the symmetry
of the inner product 〈·, ·〉∗, the equation (8) becomes:

355− 65 ε1 =0,

27, 390

65
−
(

1

65

)2

473, 520 ε2 =0.
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Consequently, ε1 = 355
65 = 71

13 , ε2 = 59,345
15,784 therefore, we get:

Aproj,1 = Aapprox,∗1 = ε1E1 + ε2E2 =

 0 ε1 − 49
65ε2 ε1 + 16

65ε2

−ε1 + 49
65ε2 0 ε2

−ε1 − 16
65ε2 −ε2 0

 .
Finally, we obtain the following multiplicative PC matrix:

Mapprox,∗1 =

 1 eε1−
49
65
ε2 eε1+

16
65
ε2

e−ε1+
49
65
ε2 1 eε2

e−ε1−
16
65
ε2 e−ε2 1

 .
Example 4.5. Let us repeat the calculations made in Examples 4.2, 4.3 and 4.4 to provide a consistent
approximation of the matrix M set in (4) by means of the inner product induced by matrices:

X1 =

1 0 0

0 2 0

0 0 3

 , X2 =

2 0 0

0 3 0

0 0 1

 , Y1 =

3 0 0

0 1 0

0 0 2

 , Y2 =

1 0 0

0 3 0

0 0 2

 .
We obtain

A(E1) =

 0 7 6

−9 0 0

−10 0 0

 ,
so

〈E1, B2〉∗ = 16 and 〈E1, E1〉∗ = 32.

By equations (3), we get

E1 =

 0 1 1

−1 0 0

−1 0 0

 and E2 =

 0 −1
2

1
2

1
2 0 1

−1
2 −1 0

 =
1

2

 0 −1 1

1 0 2

−1 −2 0

 .
Since

A(E2) = −1

2

 0 −7 6

9 0 20

−10 −12 0

 ,
we calculate the inner products

〈A,E1〉∗ = 144, 〈A,E2〉∗ = 88 and 〈E2, E2〉∗ = 24.

By solving the equations

144− 32 ε1 =0,

88− 24ε2 =0.
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we get ε1 = 9
2 , and ε2 = 11

3 therefore,

Aproj,2 = Aapprox,∗2 = ε1E1 + ε2E2 =

 0 8
3

19
3

−8
3 0 11

3

−19
3 −11

3 0

 .
Finally,

Mapprox,∗2 =

 1 e
8
3 e

19
3

e−
8
3 1 e

11
3

e−
19
3 e−

11
3 1

 ,
and its priority vector calculated with the use of GMM is equal to

v(Mapprox,∗2) =

 e3

e
1
3

e−
10
3

 = v(M).

5. Approximation selection

It is worthwhile to stress that in the previous examples we got three approximations of the same
matrix M . An important dilemma has surfaced: how to compare different approximations of a given
PC matrix obtained by the use of different inner products? The answer to this question is: they are
incomparable.

5.1. Inconsistency

The first criterion that we took into consideration was to compare inconsistency indices of the expo-
nential transformations of differences A−Aproj. However, this attempt appeared to be incorrect.

Let us consider the inconsistency indexKii of a pairwise comparison matrixM given by formula:

Kii(M) = max
i<j<k

(
1−min

{
mik

mijmjk
,
mijmjk

mik

})
. (9)

This indicator satisfies all the desired axioms formulated in [19].

Theorem 5.1. Let A and B be additive pairwise comparison matrices such that B is additively con-
sistent. Then

Kii (exp(A−B)) = Kii (exp(A)) .
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Proof:
Take any (i, j, k) ∈ T (n). Since bij + bjk = bik, we get

1 − min

{
eaik−bik

eaij−bijeajk−bjk
,
eaij−bijeajk−bjk

eaik−bik

}
=

1 − min

{
eaikebij+bjk−bik

eaijeajk
,

eaijeajk

eaikebij+bjk−bik

}
=

1 − min

{
eaik

eaijeajk
,
eaijeajk

eaik

}
,

which completes the proof. ut

From the above theorem it follows that if we take two different consistent approximations B and
C of an additive matrix A they satisfy

Kii (exp(A−B)) = Kii (exp(A)) = Kii (exp(A− C)) .

5.2. Priority vectors for different inner products

The second attempt to judge whether a consistent approximation Aapprox of a PC matrix A is accept-
able could be to compare the priority vectors induced byA andAapprox for any inner product. In [8] it
has been proved that the elements of a projection matrix Aapprox induced by a Frobenius product are
given by the ratios wi

wj
, where vector w is obtained by GMM. As it has been shown in [15] the priority

vectors induced by A and Aapprox in this case coincide:

Theorem 5.2. Let A be a PC matrix and Aapprox =
[
wi
wj

]
, where w = GM(A), i.e.

wk = n

√√√√ n∏
j=1

akj .

Then GM(A) = GM(Aapprox).

As the following example shows the priority vectors of a matrix and its consistent approximation
may differ if we use other inner products.

Example 5.3. Consider an inconsistent additive PC matrix A from Example 3.6:

A =

 0 2 7

−2 0 3

−7 −3 0


and its corresponding multiplicative PC matrixM = exp(A). Let us take three inner products: Frobe-
nius product and the inner products 〈·, ·〉∗1 and 〈·, ·〉∗2 from Examples 4.2 and 4.5. The approximations
Aapprox,F, Aapprox,∗1 and Aapprox,∗2 are given in Examples 3.6, 4.3 and 4.5, respectively.
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Notice that

GM(exp(A)) = GM(exp(Aapprox,F)) = GM(exp(Aapprox,∗2)),

but GM(exp(A)) and GM(exp(Aapprox,∗1)), are linearly independent. This observation, however, is
not surprising. The matrix exp(Aapprox,∗1) minimizes the distance from exp(A) to the set of cosistent
PC matrices according to the inner product < ·, · >∗1, but not to the Frobenius inner product.

In the following we show that as we change the inner product, we also have to change the formula for
a priority vector. It is done by extending Theorem 5.2 to weighted Frobenius inner products. For this
purpose we recall the most general standard definition of an inner product in M (n,K) :

Let G1, G2, . . . , GN be N = n2 linearly independent matrices in the space M (n,K). Represent
matrices A,B ∈ M (n,K) in a unique manner as

A=
N∑
k=1

αkGk; αk ∈ K,

and

B=

N∑
k=1

βkGk; βk ∈ K,

and define the inner product by

〈A,B〉 =

N∑
i,j=1

γijαiβj ,

where Γ = [γij ] is a positive definite N × N -matrix. For example, if we choose the identity matrix
Γ = I and G(i−1)n+j = Eij/

√
%ij for a matrix P = [%ij ] = [%i%j ] of n2 positive weights, then we

get weighted Frobenius norm ‖ A ‖2F,P = 〈A,A〉F,P induced by the weighted Frobenius inner product

〈A,B〉F,P =

n∑
i,j=1

%ijaijbij .

By Lemma 2.4 each matrix [bij ] ∈ An satisfies bij = σi − σj , where the additive constant σ1
is fixed. Hence the squared weighted distance distF,P (A,An) of an anti-symmetric real matrix A to
the space An of all additively consistent real matrices is equal to the minimal value of the quadratic
function

fA (σ) =

n∑
i,j=1

%ij(aij − σi + σj)
2,

of variable σ = (σ1, σ2, . . . , σn) ∈ Rn with first coordinate σ1 fixed. This minimal value is attained
at the unique solution σ2, σ3, . . . , σn of the following system of normal equations

n∑
j=1

%j (aij − σi + σj) = 0, i = 2, 3, . . . , n, (10)

with left-hand sides equal to − 1
4%i

∂fA(σ)
∂σi

.
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From now on we consider only real-valued n × n –matrices and, unless otherwise stated, always
choose the first coordinate σ1 of priority vector σ equal to 0. In view of the following theorem it follows
that another reasonable choice for additive constant σ1 in (10) would be the weighted arithmetic mean
of the first row of matrix A :

σ1 =

∑n
j=1 %ja1j∑n
j=1 %j

.

Theorem 5.4. Let A = [aij ] be an anti-symmetric real matrix. If P = [%i%j ] is a matrix of positive
weights, then the additively consistent orthogonal approximation Aapprox = [σi − σj ] of A onto An
with respect to weighted Frobenius norm ‖ · ‖F,P is determined by:

σi =

∑n
j=1 %jaij∑n
j=1 %j

, i = 1, 2, . . . , n. (11)

Proof:
Since the orthogonal projection is determined uniquely, it is sufficient to check that normal equations
(10) are satisfied by given in (11) values of σi. For this purpose denote |%| = %1 + · · · + %n and note
that

n∑
j=1

%j (aij − σi) =
n∑
j=1

%jaij − σi |%| = 0

for these values of σi. Moreover, by the anti-symmetry of A we have ajk = −akj , and so

n∑
j=2

%jσj =−
n∑
j=2

%j
|%|

n∑
k=1

%kakj = −
n∑
k=1

%k
|%|

−%1ak1 +

n∑
j=1

%jakj


= %1σ1 −

n∑
k=1

%kσk =−
n∑
k=2

%kσk.

Thus the last sum is also equal to 0, which completes the proof. ut

Theorem 5.5. Let M = [mij ] be a PC matrix. If P = [%i%j ] is a matrix of positive weights, then the
consistent approximation

Mapprox := exp(log M) approx = [ωi/ωj ] εMn

of M with respect to weighted Frobenius norm ‖ · ‖F,P is determined uniquely by:

ωi =

 n∏
j=1

(mij)
%j

1/
∑n

j=1 %j

, i = 1, 2, . . . , n. (12)

Proof:
Apply Theorem 5.4 to the anti-symmetric matrix A = [aij ] with aij = logmij in order to show
that the elements of consistent orthogonal projection (logM )approx = [σi − σj ] of logM ontoAn are
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determined by:

σi =

∑n
j=1 %j logmij∑n

j=1 %j
= log

 n∏
j=1

(mij)
%j

1/
∑n

j=1 %j

, i = 1, 2, . . . , n.

Hence we get formulae (12) from identity ωi = exp σi, which is a direct consequence of Defini-
tion 3.5. ut

The direct corollaries of Theorems 5.4 and 5.5 are the following generalizations of Theorem 5.2,
which state that Definition 3.5 is idempotent:

Corollary 5.6. Let A = [aij ] be an anti-symmetric matrix. If P = [%i%j ] is a matrix of posi-
tive weights, then the additively consistent approximation with respect to weighted Frobenius norm
‖ · ‖F,P is idempotent:

(Aapprox)approx = Aapprox.

Corollary 5.7. Let M = [mij ] be a PC matrix. If P = [%i%j ] is a matrix of positive weights, then
the consistent approximation with respect to weighted Frobenius norm ‖ · ‖F,P is idempotent:(

exp
[
(log M) approx

] )
approx.

= exp
[
(log M) approx

]
.

This means that in a weighted Frobenius norm the consistent approximation mapping Mproj : M 7→
Mapprox from Definition 3.5 is a projection of the set PCn of all PC matrices onto the multiplicative
groupMn = (Mn, ·) .

5.3. Nonlinear consistent projection in weighted Frobenius norms

The squared weighted Frobenius distance distF,P (M,Mn) of a PC matrix M to the spaceMn of
all multiplicatively consistent matrices [xi/xj ] is determined by a point x = (x1, x2, . . . , xn) with the
first coordinate x1 = 1, for which minimal value of the function

gM (x) =

n∑
i,j=1

%ij(mij −
xi
xj

)
2
, x1 = 1.

is attained. If P = [%ij ] is a symmetric matrix of positive weights, then this minimal value is attained
at solution x2, x3, . . . , xn of the following system of nonlinear normal equations

1

xi

n∑
j=1

%j

[
xj
xi

(
1

mij
− xj
xi

)
− xi
xj

(
mij −

xi
xj

)]
= 0, i = 2, 3, . . . , n, (13)

where the left- hand sides are equal to −1
4
∂gM (x)
∂xi

.
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It seems unlikely that one can find an explicit solution of this system. However, it can be solved by
the locally convergent Newton’s method. As a starting point, the priority vector x = (x1, x2, . . . , xn),
given in Theorem 5.5, should be used. Moreover, further improvement could be made by applying
recent results on classical discrete orthogonal polynomials proposed in [23].

The lack of an explicit solution should not be a huge surprise. Similar situation exists in physics
with the three body problem having only numerical solution and a proof that the general case of this
problem has no analytical solution. Evidently, the numerical solution is sufficient to conquer the space.

6. Conclusions

The primary goal of this study was to generalize orthogonal projections for computing approximations
of inconsistent PC matrices from the Euclidean space to the Hilbert space of PC matrices endowed
in a different inner product. However, a side product of our study seems to be even more important:
there is no mathematical reasoning to support any belief that there is only one approximation method
of inconsistent PC matrices. It is a matter of an arbitrary choice of the dot product for the orthogo-
nalization projection process. However, there is a practical reason to use a Frobenius inner product
(which generates GM solution), which is its computational simplicity.
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