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This study presents an abelian group approach to analyzing inconsistency in pairwise 
comparisons. A notion of an inconsistency indicator map on a group, taking values in an 
abelian linearly ordered group, is introduced. For it, metrics and generalized metrics are 
utilized. Every inconsistency indicator map generates both a metric on a group and an 
inconsistency indicator of an arbitrary pairwise comparisons matrix over the group.
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1. Introduction

The first documented use of pairwise comparisons (PC) is attributed to Ramon Llull, a 13th-century mystic and philoso-
pher. Thurstone applied pairwise comparisons to experimental psychology and delivered the first formal introduction of 
pairwise comparisons in the form of “the law of comparative judgement” in [17]. A variation of this law is known as the 
BTL (Bradley–Terry–Luce) model (cf. [3]). A number of controversial customized pairwise comparisons have been considered 
in numerous studies. However, we do not intend to support any customization here. Amongst many others, Saaty’s seminal 
work [16] had a considerable impact on the pairwise comparisons (PC) research. The authors’ position is that the influ-
ence of [16] on the pairwise comparisons research should be acknowledged despite serious controversies generated by it. 
This work provides a more refined alo-group perspective on inconsistency in pairwise comparisons originated in [2] where 
deficiencies exist and some (but not all) are addressed in this study.

All measurements (physical or not) are related to pairwise comparisons. For example, when we say that the distance 
between stars A and B is 2.71 light years, we simply compare the unit of distance (in this case, one light year) to the 
distance between A and B . Pairwise comparisons are of particular use where a unit of measurement cannot be defined 
and it is so for most subjective assessments. For example, public safety or environmental pollution lacks a unit (or a “yard 
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stick”) for the measurement, however, it is still necessary to measure it by comparing them to each other and expressing it 
by a ratio stored in what we call a PC matrix.

A triad (x, y, z) of entries of PC matrix, expressing ratios of three entities, is called consistent if xz = y. This is a case of 
multiplicative consistency expressing ratios of compared entities. Another approach to the consistency of triads of numbers is 
additive. Namely, a triad x, y, z of numbers is called additively consistent if x + z = y. Additive consistency is relevant to the 
question: “by how much x is larger (or more important) than y”. In most studies about PC, the multiplicative consistency 
has been mostly considered (e.g., [1]). Additive PC have been analyzed in [19] recently. Differences between quality values 
instead of ratios appear in BTL model. In [2], both multiplicative and additive pairwise comparisons were unified to the 
comparisons of elements of abelian linearly ordered groups (in abbreviation; alo-groups). A consistency index of triads 
of elements of an alo-group was defined in [2] (for a single triad, defined in [8] of 1993). An inconsistency indicator for 
triads, introduced in [8] for the multiplicative case in 1993 for a single triad was extended in [4]. The analysis of Koczkodaj’s 
inconsistency indicator is included in [1] and [11]. An axiomatization of inconsistency in pairwise comparisons was proposed 
in [11] (with some minor deficiencies being currently corrected).

The main aim of this work is to introduce and investigate a new general concept of an inconsistency indicator map on a 
group, strictly relevant to a generalized metric which takes values in an alo-group. The inconsistency indicator maps induce 
inconsistency indicators of pairwise comparisons matrices.

Axioms of logic, rules of deduction and system ZF are assumed in this work. The notation and terminology of [12] is 
followed. In particular, ω is the set of all non-negative integers (of von Neumann), 0 = ∅, 1 = {0} and n + 1 = n ∪ {n} for 
each n ∈ ω (cf. [14]).

2. A PC matrix over a group

Let X = 〈X, ·〉 be a group. We denote by 1X or, for simplicity, by 1 the unit element of X . For a ∈ X , the symmetric 
(inverse) element of a in X is denoted by a−1.

Let K be a non-void finite set. A K × K matrix A = [ai, j] over X is a mapping A : K × K → X such that ai, j = A(i, j) for 
each pair 〈i, j〉 ∈ K × K . There exists n ∈ ω such that the sets n and K are equipollent. Let ψ : n → K be a bijection. We can 
define an n × n matrix Aψ over X by Aψ(i, j) = A(ψ(i), ψ( j)) for each 〈i, j〉 ∈ n × n. Therefore, without loss of generality, 
we can concentrate on n × n-matrices where n ∈ ω \ {0} = {1, 2, . . .}.

Definition 2.1. For n ∈ ω \ {0}, let A = [ai, j] be an n × n matrix such that ai, j ∈ X for all i, j ∈ n. We say that:

(i) the matrix A is a pairwise comparisons matrix (in abbreviation a PC matrix) over the group X if ai,i = 1X and ai, j = a−1
j,i for 

all i, j ∈ n;
(ii) the matrix A is a consistent matrix over the group X if ai,k · ak, j = ai, j for all i, j, k ∈ n.

Remark 2.2. If · is the standard multiplication of positive real numbers, we call the ordered pair R+ = 〈(0; +∞), ·〉 the 
standard multiplicative group of positive real numbers. The notion of a PC matrix over this group coincides with the usual 
notion of a PC matrix used by many PC researchers. Pairwise comparisons matrices over a group equipped with a linear 
order were also considered in [2].

Fact 2.3. Every consistent n × n matrix A = [ai, j] over a group X is a PC matrix over X.

3. An inconsistency indicator map on a group

To formulate a definition of an inconsistency indicator map, we will use the following notion of an alo-group investigated 
in [2] and, for example, also in [7]:

Definition 3.1. An abelian linearly ordered group (abbreviated to “alo-group”) is an ordered pair 〈〈G, 
〉, ≤〉 where 〈G, 
〉 is 
an abelian group, while ≤ is a linear order on G such that if a, b, c ∈ G and a ≤ b, then a 
 c ≤ b 
 c.

Distance functions taking values in alo-groups were considered, for instance, in [2] and [7]. We modify Definition 3.2 
of [2], by dropping its first condition d(a, b) ≥ e and changing G to X in the domain of d, to the following:

Definition 3.2. Let G = 〈〈G, 
〉, ≤〉 be an alo-group. Let 1G be the neutral element of 〈G, 
〉. A G-metric or a G-distance on 
a set X is a function d : X2 → G such that, for all x, y, z ∈ X , the following conditions are satisfied:

(i) d(x, y) = 1G ⇔ x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, z) 
 d(z, y).
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The first condition d(a, b) ≥ e (where e = 1G in our notation) of Definition 3.2 of [2] is excessive and it becomes a rather 
simple Proposition 3.3 (it is included here for completeness although it might have been buried in some publication).

Proposition 3.3. Let G = 〈〈G, 
〉, ≤〉 be an alo-group and let d be a G-metric on a set X. Therefore, for all x, y ∈ X, the following 
inequality holds: 1G ≤ d(x, y).

Proof. Let x, y ∈ X and let a = d(x, y). We have 1G = d(x, x) ≤ d(x, y) 
 d(y, x) = a 
 a, so a−1 ≤ a. Suppose that a < 1G . 
Therefore, 1G = a 
 a−1 < a−1 ≤ a, which is a contradiction. Hence 1G ≤ a. �

In what follows, let us assume that G = 〈〈G, 
〉, ≤〉 is an alo-group.

Fact 3.4. Let � : X → Y be an injection from a set X to a set Y . If d : Y 2 → G is a G-metric on the set Y , then ρ : X2 → G, given by 
the formula ρ(x, y) = d(�(x), �(y)) for all x, y ∈ X, is a G-metric on the set X.

Definition 3.5. (Cf. Definition 3.1 of [2].)

(i) The function ‖ · ‖: G → G , defined by ‖ x ‖= max{x, x−1} for each x ∈ X , is called the G-norm on G .
(ii) Let dG(x, y) =‖ x 
 y−1 ‖ for all x, y ∈ G . Therefore, the function dG : G2 → G is called the G-metric induced by the 

G-norm on G.

Notice that, by Proposition 3.2 of [2], dG is a G-metric on the set G , indeed. Let us introduce a new concept of a 
G-inconsistency indicator map.

Definition 3.6. Let X = 〈X, ·〉 be a group. A G-distance-based inconsistency indicator map (in abbreviation: a G-inconsistency 
indicator map) on the group X is a function T : X3 → G such that, for all a, b, c, d, e ∈ X , the following conditions are 
satisfied:

(i) T (a, b, c) = 1G ⇔ ac = b;
(ii) T (a, b, c) = T (b, ac, 1);

(iii) T (a, de, c) ≤ T (a, b, c) 
 T (d, b, e).

Fact 3.7. Let � : 〈X, +〉 → 〈Y , ·〉 be an isomorphism of a group 〈X, +〉 onto a group 〈Y , ·〉. Suppose that T : Y 3 → G is a 
G-inconsistency indicator map on 〈Y , ·〉. Therefore, S : X3 → G, given by the formula S(a, b, c) = T (�(a), �(b), �(c)) for all 
a, b, c ∈ X, is a G-inconsistency indicator map on 〈X, +〉.

Proposition 3.8. Let T be a G-inconsistency indicator map on a group X and let dT (x, y) = T (x, y, 1) for all x, y ∈ X. Therefore, 
dT : X2 → G is a G-metric on X such that, for all x, y, z ∈ X, the equality dT (xz, y) = T (x, y, z) holds.

Proof. Let x, y, z ∈ X . We will refer to conditions (i)–(iii) of Definition 3.6. By (i), we have: dT (x, y) = 1G ⇔ T (x, y, 1) =
1G ⇔ x = y. In view of (ii), dT (x, y) = T (x, y, 1) = T (x, y · 1, 1) = T (y, x, 1) = dT (y, x). Moreover, it follows from (iii) that 
dT (x, y) = T (x, y, 1) = T (x, y · 1, 1) ≤ T (x, z, 1) 
 T (y, z, 1) = dT (x, z) 
 dT (z, y). In consequence, dT is a G-metric on X . In 
the light of (ii), dT (xz, y) = T (xz, y, 1) = T (xz, y · 1, 1) = T (y, xz, 1) = T (x, y, z). �
Definition 3.9. Let T be a G-inconsistency indicator map on a group X . Therefore, the function dT : X2 → R, defined by 
dT (x, y) = T (x, y, 1) for all x, y ∈ X , is called the G-metric induced by T .

Proposition 3.10. Every G-inconsistency indicator map T on a group X satisfies the following conditions:

(i) 1G ≤ T (x, y, z) for all x, y, z ∈ X;
(ii) the group X is abelian if and only if T (x, y, z) = T (z, y, x) for all x, y, z ∈ X.

Proof. Assume that T is a G-inconsistency indicator map on a group X . Let x, y, z ∈ X . By Proposition 3.8, we 
have T (x, y, z) = dT (xz, y) where dT is the G-metric induced by T . Hence (i) holds in view of Proposition 3.3. Sup-
pose that X is not abelian. There exist a, b ∈ X such that ab �= ba. Therefore, T (a, ab, b) = dT (ab, ab) = 1G , while 
T (b,ab,a) = dT (ba,ab) �= 1G . This completes the proof. �
Proposition 3.11. Let X be a group and let d : X2 → G be a G-metric. Therefore, the function T : X3 → G, defined by T (x, y, z) =
d(xz, y) for all x, y, z ∈ X, is a G-inconsistency indicator map on X such that d = dT .
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Proof. Let a, b, c, d, e ∈ X . We have: T (a, b, c) = 1G ⇔ d(ac, b) = 1G ⇔ ac = b. Moreover, T (a, b, c) = d(ac, b) = d(b, ac) =
d(b · 1, ac) = T (b, ac, 1). Finally, T (a, de, c) = d(ac, de) ≤ d(ac, b) 
 d(b, de) = T (a, b, c) 
 d(de, b) = T (a, b, c) 
 T (d, b, e). This 
proves that T is a G-inconsistency indicator map on X . It is obvious that d = dT . �
Definition 3.12. For a G-metric d on a group X , the G-inconsistency indicator map Td on X induced by d is defined by 
Td(x, y, z) = d(xz, y) for all x, y, z ∈ X .

Theorem 3.13. Let X be a group. A function T : X3 → G is a G-inconsistency indicator map on X if and only if the function 
dT : X2 → G, defined by dT (x, y) = T (x, y, 1) for all x, y ∈ X, is a G-metric on X such that dT (xz, y) = T (x, y, z) for all x, y, z ∈ X.

Proof. This theorem follows easily from Propositions 3.8 and 3.11 when combined together. �
Corollary 3.14. If a ∈ G and 1G < a, while T1, T2 are G-inconsistency indicator maps on a group X, then the functions 
max{T1, T2}, T1 
 T2 and min{T1, a} are all inconsistency indicator maps on X.

Proof. Let di be the G-metric induced by Ti for i ∈ {1, 2}. It is not difficult to check that the functions max{d1, d2}, d1 
 d2
and min{d1, a} are G-metrics. For instance, min{d1, a} is a G-metric can be shown similarly to Theorem 4.1.3 of [5] if we 
replace 1 by a and + by 
 in the proof to Theorem 4.1.3 in [5]. Since

max{T1(x, y, z), T2(x, y, z)} = max{d1(xz, y),d2(xz, y)},
T1(x, y, z) 
 T2(x, y, z) = d1(xz, y) 
 d2(xz, z)

and min{T1(x, y, z), a} = min{d1(xz, y), a}, it suffices to apply Theorem 3.13 to conclude the proof. �
Definition 3.15. We say that a G-inconsistency indicator map T on a group X is bounded by a ∈ G if T (x, y, z) ≤ a for all 
x, y, z ∈ X .

Proposition 3.16. Let 〈X1, +〉, 〈X2, ·〉 be groups and let X = X1 × X2 be equipped with the product operation 〈x1, x2〉 ∗ 〈y1, y2〉 =
〈x1 + y1, x2 · y2〉 for x1, y1 ∈ X1 and x2, y2 ∈ X2 . Suppose that Ti is a G-inconsistency indicator map on the group Xi for i ∈ {1, 2}. 
For all elements 〈x1, x2〉, 〈y1, y2〉, 〈z1, z2〉 of X, we define

T (〈x1, x2〉, 〈y1, y2〉, 〈z1, z2〉) = max{T1(x1, y1, z1), T2(x2, y2, z2)}.
Therefore, the mapping T : X3 → G is a G inconsistency indicator map on the group X.

Proof. Let di be the G-metric induced by Ti for i ∈ {1, 2}. Put

d(〈x1, x2〉, 〈y1, y2〉) = max{d1(x1, y1),d2(x2, y2)}
for all elements 〈x1, x2〉, 〈y1, y2〉 of X . Therefore d is a G-metric on X such that

T (〈x1, x2〉, 〈y1, y2〉, 〈z1, z2〉) = d(〈x1, x2〉 ∗ 〈z1, z2〉, 〈y1, y2〉)
for all elements 〈x1, x2〉, 〈y1, y2〉, 〈z1, z2〉 of X . To conclude the proof, it suffices to use Proposition 3.11. �
Proposition 3.17. Let T be a G-inconsistency indicator map on a group X. Therefore, the function S : X3 → G, defined by S(x, y, z) =
T (z, y, x) for all x, y, z ∈ X, is a G-inconsistency indicator map on X if and only if X is abelian.

Proof. If X is abelian, then S = T by Proposition 3.10(ii). Now, assume that S is a G-inconsistency indicator map 
on X and define F = max{T , S}. By Corollary 3.14, F is a G-inconsistency indicator map on X . Since F (x, y, z) =
max{T (x, y, z), S(x, y, z)} = max{T (x, y, z), T (z, y, x)} = F (z, y, x) for all x, y, z ∈ X , we deduce from Proposition 3.10(ii) that 
X is abelian. �
Proposition 3.18. Let T be a G-inconsistency indicator map on a group X. For x, y, z ∈ X, let T−1(x, y, z) = T (z−1, y−1, x−1). 
Therefore T−1 : X3 → G is a G-inconsistency indicator map on X.

Proof. Let dT be the G-metric induced by T . For x, y ∈ X , we define d(x, y) = dT (x−1, y−1). Therefore, d : X2 → G is a 
G-metric on X . By Proposition 3.11, the mapping Td : X3 → G , defined by Td(x, y, z) = d(xz, y) for all x, y, z ∈ X , is a 
G-inconsistency indicator map on X . We observe that d(xz, y) = dT (z−1x−1, y−1) = T (z−1, y−1, x−1) = T−1(x, y, z). Hence 
T−1 is the G-inconsistency indicator map induced by d. �
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Definition 3.19. Let T be a G-inconsistency indicator map on a group X . The pairwise symmetrization of T is the mapping 
T s : X3 → G defined by

T s(x, y, z) = max{T (x, y, z), T (z−1, y−1, x−1)}
for all x, y, z ∈ X .

Definition 3.20. A G-inconsistency indicator map T on a group X is called pairwise symmetric if T (x, y, z) = T (z−1, y−1, x−1)

for all x, y, z ∈ X .

Fact 3.21. A G-inconsistency indicator map T on a group X is pairwise symmetric if and only if T = T s.

Proposition 3.22. If T is a G-inconsistency indicator map on a group X, then the pairwise symmetrization T s of T is a pairwise 
symmetric G-inconsistency indicator map on X.

Proof. It suffices to apply Corollary 3.14 and Proposition 3.18. �
Definition 3.23. If G is 〈〈R, +〉, ≤〉, where + is the standard addition of real numbers and ≤ is the standard linear or-
der in R, then every G-inconsistency indicator map on a group X will be called a real inconsistency indicator map or an 
inconsistency indicator map on X . We call 〈〈R, +〉, ≤〉 the additive real alo-group.

The following definition generalizes the notion of the G-norm given in [2] and recalled in our Definition 3.5.

Definition 3.24. A G-absolute value on a group X is a function v : X → G such that, for all x, y ∈ X , the following conditions 
are satisfied:

(i) 1G ≤ v(x);
(ii) v(x) = 1G ⇔ x = 1;

(iii) v(x · y) ≤ v(x) 
 v(y).

If G is the additive real alo-group, then a G-absolute value on X will be called a real absolute value on X .

In view of Proposition 3.1 of [2], the G-norm is a G-absolute value on G .

Fact 3.25. Let � : 〈X, +〉 → 〈Y , ·〉 be an isomorphism of groups and let v : Y → G be a G-absolute value on 〈Y , ·〉. Then w = v ◦ � :
X → G is a G-absolute value on 〈X, +〉.

Fact 3.26. If v is a G-absolute value on a group X, then the function dv : X2 → G , defined by dv(x, y) = max{v(x · y−1), v(y · x−1)}
for all x, y ∈ X, is a G-metric on X.

Definition 3.27. When v is a G-absolute value on X , then the function dv , defined in Fact 3.26, will be called the G-metric 
induced by v , and the G-inconsistency indicator map induced by dv will be called the inconsistency indicator map induced by 
the G-absolute value v .

Example 3.28. For x ∈ R+ , we define v(x) = 1 − min{x, x−1}. Let us check that v : R+ → R is a real absolute value on the 
standard multiplicative group R+ of positive real numbers (see Fig. 1).

Let x, y ∈R+ . Evidently, 0 ≤ v(x). Moreover,

v(x) = 0 ⇔ min{x, x−1} = 1 ⇔ x = 1.

The inequality v(x · y) ≤ v(x) + v(y) is equivalent to the following inequality (A):

min{x, x−1} + min{y, y−1} ≤ 1 + min{xy, (xy)−1}.
To prove (A), we shall consider the following cases:

(1) xy ≤ x ≤ 1. Then: (A) ⇔ x + y ≤ 1 + xy ⇔ 0 ≤ (1 − x)(1 − y).
(2) xy ≤ 1 ≤ x. Then: (A) ⇔ x−1 + y ≤ 1 + xy ⇔ 0 ≤ (x − 1)(1 + xy).
(3) x ≤ xy ≤ 1. Then: (A) ⇔ x + y−1 ≤ 1 + xy ⇔ 0 ≤ (y − 1)(1 + xy).
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Fig. 1. A real absolute value on the standard multiplicative group of positive real numbers.

(4) x ≤ 1 ≤ xy. Then: (A) ⇔ x + y−1 ≤ 1 + (xy)−1 ⇔ 0 ≤ (xy + 1)(1 − x).
(5) 1 ≤ xy ≤ x. Then: (A) ⇔ x−1 + y ≤ 1 + (xy)−1 ⇔ 0 ≤ (xy + 1)(1 − y).
(6) 1 ≤ x ≤ xy. Then: (A) ⇔ x−1 + y−1 ≤ 1 + (xy)−1 ⇔ 0 ≤ (1 − x)(1 − y).

This implies that (A) holds and, in consequence, v is a real absolute value. In view of Fact 3.26, the function d, defined 
by d(x, y) = v(xy−1) for all x, y ∈ R+ , is a metric on R+ . Let Td be the inconsistency indicator map induced by the real 
absolute value v on the group R+ . Obviously, Td is pairwise symmetric and bounded by 1. Furthermore, if we use the 
function KI : R3+ → R, defined by KI(x, y, z) = 1 − min{ y

xz , 
zx
y } for all x, y, z ∈ R+ , we see that KI = Td . Notice that KI was 

defined in [8]. The articles [1] and [11] analyze KI; however, they do not demonstrate that KI is induced by a real absolute 
value.

Example 3.29. Let X = R and Y = (0; +∞). Let + and · denote the standard addition in X and, respectively, standard 
multiplication in Y . Suppose that a is a fixed positive real number. Obviously, the mapping � : X � x �→ ax ∈ Y is an 
isomorphism of the group 〈X, +〉 onto the group R+ = 〈Y , ·〉. By Facts 3.4, 3.7 and 3.25, taken together with Example 3.28, 
we may define a G-absolute value wa : X → G , a G-metric ρa : X2 → G and a G-inconsistency indicator map Sa : X3 → G
by the formulas:

wa(x) = v(ax) = 1 − min{ax,a−x},
ρa(x, y) = dv(a

x,ay) = max{v(ax,a−y), v(ay,a−x)}
= 1 − min{ax−y,ay−x},

Sa(x, y, z) = ρa(x + z, y) = 1 − min{ax+z−y,ay−x−z}
for all x, y, z ∈ X . The indicator map Sa is also pairwise symmetric and bounded by 1. The function ρ2 is illustrated by 
Fig. 2.

Remark 3.30. Usually, a mapping T : X3 → Y is called symmetric if, for any 〈x1, x2, x3〉 ∈ X3 and for any permutation σ of 
the set {1, 2, 3}, the equality

T (x1, x2, x3) = T (xσ (1), xσ (2), xσ (3))

holds. We will demonstrate how a G-inconsistency indicator map can be symmetric for only very special groups.

Definition 3.31. Let T be a G-inconsistency indicator map on a group X . Let S3 be the set of all permutations of the set 
{1, 2, 3}. The full symmetrization of T is the mapping T f : X3 → G , defined by the formula:

T f (x1, x2, x3) = max{T (xσ (1), xσ (2), xσ (3)) : σ ∈ S3}
for all x1, x2, x3 ∈ X .

Theorem 3.32. Let T be a G-inconsistency indicator map on a group X. Therefore, the following conditions hold:
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Fig. 2. G-metric defined in Example 3.29 for a = 2.

(i) if T f is a G-inconsistency indicator map on X, then x2 = 1 for each x ∈ X;
(ii) if T is induced by a G-absolute value on X, while x2 = 1 for each x ∈ X, then T f = T .

Proof. Let dT be the G-metric induced by T . For x, y ∈ X , we define ρ(x, y) = T f (x, y, 1). It is easy to observe that

ρ(x, y) = max{dT (x, y),dT (xy,1),dT (yx,1)}.
Assume that T f is a G-inconsistency indicator map on X . Since, by Proposition 3.8, the function ρ : X2 → G is a G-metric 
on X , we have ρ(x, x) = 1G , which implies that dT (xx, 1) = 1G . Hence x2 = 1. This proves that (i) is satisfied.

To prove (ii), suppose that T is induced by a G-absolute value v and that x2 = 1 for each x ∈ X . Therefore, the group X is 
abelian. Therefore, we can notice that, for all x, y ∈ X , the following equalities hold: dT (xy, 1) = dv(xy, 1) = v(xy) = dT (x, y), 
so ρ = dv and T f = T . �
Corollary 3.33. Let T be a G-inconsistency indicator map induced by a G-absolute value on a group X. Therefore, T f is a 
G-inconsistency indicator map on X if and only if x2 = 1 for each x ∈ X.

Since every inconsistency indicator map on a group X is defined on X3, while every metric on X is defined on X2, it 
is reasonable to find such a generalized metric, defined on X3, which is strictly relevant to a given inconsistency indicator 
map on X . It seems that generalized metrics introduced in [13] are most suitable to this aim. We modify Definition 3 of 
[13] as follows:

Definition 3.34. A (3, G)-metric on a set X is a function g : X3 → R which satisfies the following conditions:

(i) g(x, y, z) = 1G if x = y = z ∈ X ;
(ii) 1G < g(x, x, y) for all x, y ∈ X with x �= y;

(iii) g(x, x, y) ≤ g(x, y, z) for all x, y, z ∈ X with z �= y;
(iv) for every permutation σ of the set {1, 2, 3} and for all x1, x2, x3 ∈ X , the equality g(x1, x2, x3) = g(xσ(1), xσ(2), xσ(3))

holds;
(v) g(x, y, z) ≤ g(x, a, a) 
 g(a, y, z) for all x, y, z, a ∈ X .

Theorem 3.35. Let X be a group. For a function T : X3 → G and for all x, y, z ∈ X, let

gT (x, y, z) = max{T (x, y,1), T (x, z,1), T (y, z,1)}.
Therefore, T is a G-inconsistency indicator map on X if and only if the function gT : X3 → R is a (3, G)-metric on X such that

T (x, y, z) = max{g(xz, y, y), g(xz, xz, y)}
for all x, y, z ∈ X.

Proof. Necessity. Assume that T is a G-inconsistency indicator map on X and let dT be the G-metric induced by T . Therefore, 
the function g : X3 → G , defined by

g(x, y, z) = max{dT (x, y),dT (y, z),dT (x, z)}
for all x, y, z ∈ X , is a (3, G)-metric on X (cf. [13]). It is easily seen that g = gT and that max{g(xz, y, y), g(xz, xz, y)} =
dT (xz, y) = T (x, y, z).
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Sufficiency. Now, we assume that the function gT is a (3, G)-metric on X such that T (x, y, z) = max{g(xz, y, y), g(xz,
xz, y)} for all x, y, z ∈ X . Therefore, the function ρg : X2 → G , defined by

ρg(x, y) = max{gT (x, y, y), gT (x, x, y)}
for all x, y ∈ X , is a G-metric on X such that ρg(xz, y) = T (x, y, z) for all x, y, z ∈ X . It follows from Theorem 3.13 that T is 
a G-inconsistency indicator map on X and that ρg is the G-metric induced by T . �
4. T -inconsistency indicator

As in the previous section, we assume that G = 〈〈G, 
〉, ≤〉 is an alo-group.

Definition 4.1. Let T be a G-inconsistency indicator map on a group X . For a non-void finite subset C of X3, let

IT [C] = max{T (x, y, z) : 〈x, y, z〉 ∈ C}.
We call IT [C] the T -inconsistency indicator of the set C .

Definition 4.2. For n ∈ ω \ 1, let A = [ai, j] be an n × n PC matrix over a group X and let T be a G-inconsistency indicator 
map on X . Therefore, the T -inconsistency indicator of the matrix A is IT [A] defined by

IT [A] = max{T (ai,k,ai, j,ak, j) : i, j,k ∈ n}.
In other words, IT [A] is the IT -inconsistency indicator IT [C(A)] of the set

C(A) = {(ai,k,ai, j,ak, j) : i, j,k ∈ n} ⊆ X3.

Remark 4.3. Let A = [ai, j] be a 3 ×3 PC matrix over G . In Definition 6.1 of [2], the consistency indicator IG of A was defined 
as follows: IG(A) = dG(a0,2, a0,1 
 a1,2) where dG is the G-metric induced by the G-norm on G . In this case, dG (a2,0, a2,1 

a1,0) = dG(a0,2, a0,1 
 a1,2). However, when, instead of dG , we consider the G-metric dT induced by a G-inconsistency 
indicator map T on G , it may happen that dT (a2,0, a2,1 
 a1,0) �= dT (a0,2, a0,1 
 a1,2). This is partly why we do not define 
IT [A] as dT (a0,2, a0,1 
 a1,2).

Example 4.4. Let us fix elements a, b, c ∈ G such that 1G < a < b < c. Let Xa = {x ∈ G : 1G ≤ x} and Xb = G \ Xa . For distinct 
x, y ∈ X , we put ρ(x, x) = 1G , ρ(x, y) = a if both x, y are elements of Xa , while ρ(x, y) = b if both x, y are elements of Xb . 
Finally, ρ(x, y) = c if either x ∈ Xa and y ∈ Xb or x ∈ Xb and y ∈ Xa . Therefore, ρ is a G-metric on G . Let T be the 
G-inconsistency indicator map on G induced by ρ . Put ai,i = 1G for each i ∈ 3, a0,1 = a0,2 = a1,2 = a and a1,0 = a2,0 = a2,1 =
a−1. Therefore, ρ(a0,1 
 a1,2, a0,2) = T (a, a, a) = a, while ρ(a2,1 
 a1,0, a2,0) = T (a−1, a−1, a−1) = b and ρ(a2,0 
 a0,1, a2,1) =
T (a−1, a−1, a) = c. In consequence, IT [A] = c and ρ(a2,1 
 a1,0, a2,0) �= IT [A] �= ρ(a0,1 
 a1,2, a0,2).

Corollary 4.5. For n ∈ ω \ 3, let A = [ai, j] be an n × n PC matrix over a group X and let T be a G-inconsistency indicator map on X. 
Therefore:

IT [A] = IT s [A].

Proof. We deduce the above equation from the definition of T s and from the equality T s(ai,k, ai, j, ak, j) = T s(a j,k,

a j,i, ak,i). �
Corollary 4.6. Let A = [ai, j] be a 3 × 3 PC matrix over a group X and let T be a G-inconsistency indicator map on X. Therefore,

IT [A] = max{T s(a0,1,a0,2,a1,2), T s(a1,0,a1,2,a0,2), T s(a0,2,a0,1,a2,1)}.

Proof. It suffices to observe that the following equations hold:

T s(a0,1,a0,2,a1,2) = T s(a2,1,a2,0,a1,0),

T s(a1,0,a1,2,a0,2) = T s(a2,0,a2,1,a0,1),

T s(a1,2,a1,0,a2,0) = T s(a0,2,a0,1,a1,2). �
Example 4.4 demonstrates that, in general, the equality from Corollary 4.6 cannot be simplified; however, we can offer 

the following proposition.
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Proposition 4.7. Suppose that v is a G-absolute value on an abelian group X, dv is the G-metric induced by v, while T is the G
inconsistency indicator map on X induced by the G-metric dv . Let A = [ai, j] be a 3 × 3 PC matrix over X. Therefore, T is pairwise 
symmetric and IT [A] = T (a0,1, a0,2, a1,2).

Proof. We observe that

T (x, y, z) = dv(xz, y) = max{v((xz) · y−1), v(yz−1x−1)} = T s(x, y, z).

Let a0,1 = x, a0,2 = y, a1,2 = z. Since X is abelian, it is easily seen that T (x, y, z) = T (x−1, z, y) = T (y, x, z−1). We apply 
Corollary 4.6 to conclude the proof. �
Remark 4.8. In the light of Proposition 4.7, the consistency index from definition 6.2 of [2] is a particular case of our 
T -inconsistency indicator of a matrix.

Fact 4.9. Let T p be a G-inconsistency indicator map on a group Xp for p ∈ {1, 2}. Suppose that Ap = [ai, j] is an n × n PC matrix over 
the group Xp for p ∈ {1, 2}. Let X = X1 × X2 , while

T ((x1, x2), (y1, y2), (z1, z2)) = max{T1(x1, y1, z1), T2(x2, y2, z2)}
for all xp, yp, zp ∈ Xp and p ∈ {1, 2}. For all i, j ∈ n, let ci, j = (ai, j, bi, j). Therefore, for the n ×n PC matrix C = [ci, j] over X, we have

IT [C] = max{IT1 [A],IT2 [B]}.
Example 4.10. For n ∈ ω \ 2, let A = [ai, j] be an n × n PC matrix over the group R+ . If T is the inconsistency indicator 
map on R+ induced by the real absolute value defined in Example 3.28, then IT [A] = ii(A) where ii(A) is the same as in 
Theorem 1 of [11].

In the literature on the theory of pairwise comparisons, the multiplicative PC matrices are often transformed into ad-
ditive PC matrices by a logarithmic operation, probably used for the first time in [18]. Therefore, it is reasonable to apply 
Example 3.29 as follows.

Example 4.11. Suppose that a is a given positive real number, while B = [bi, j] is an n × n PC matrix over the group 〈R, +〉. 
When Sa is the inconsistency indicator map defined in Example 3.29, then the Sa-inconsistency indicator of B is given by 
the following formula:

ISa [B] = max{Sa(bi, j,bi,k,b j,k) : i, j,k ∈ n}
= max{1 − min{abi, j+b j,k−bi,k ,abi,k−bi, j−b j,k } : i, j,k ∈ n}.

The matrix B is additively consistent if and only if its elements satisfy equations bi, j = bi,k + bk, j for all i, j, k ∈ n. It is 
obvious that B is additively consistent if and only if ISa [B] = 0.

Remark 4.12. Suppose that T is a G-inconsistency indicator map on a group X and that A is an n × n PC matrix over X
where n ∈ ω \ 2. Therefore, A is not consistent if and only if IT [A] > 1G . Since IT [A] = 1G holds only when A is consistent, 
for IT [A], we prefer the term “T -inconsistency indicator” to the term “a consistency index”.

5. Conclusions

This study generalizes some approaches to inconsistency indicators of reciprocal pairwise comparisons matrices given, 
for instance, in [2], [8] and [11].

For an abelian linearly ordered group G , a new concept of a G-inconsistency indicator map on a not necessarily abelian 
group X has been introduced and its basic properties have been investigated. The notions of a G-metric and a G-norm, given 
by in [2], have been generalized. Generalized metrics in [13] have also been investigated and connected with inconsistency 
indicator maps. Finally, using the inconsistency indicator maps, we have many distinct inconsistency indicators for pairwise 
comparisons matrices over groups. The inconsistency indicator, proposed by Koczkodaj for a single triad in 1993 in [8], as 
well as the consistency index independently defined by the formula of Definition 6.2 in [2] 16 years later, are special cases 
of the distance-based inconsistency indicator map introduced in Definition 3.6 of this study.

By an algebraic analysis, we have prepared general and more precise mathematical tools for pairwise comparisons meth-
ods. This work gives a group-theoretical perspective on problems of inconsistency in pairwise comparisons. Other properties 
and applications of the inconsistency indicator maps should be a subject of future research. In particular, the presented 
approach could be adjusted to accommodate uncertainty by using evidence theory (e.g. [15]). The proof of the inconsistency 
reduction process (based on the improvement of the worse triad) may be a challenging problem to solve for the proposed 
generalization. It was proved, only for the inconsistency proposed by Koczkodaj, in [8] with the recent Monte Carlo exper-
imentation in [9]. The mathematical properties of the ratio scale (examined in [6] and [10]) should be revisited for the 
proposed generalization.
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