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Abstract. This study has been inspired by numerous requests for clarification from researchers
who often confuse Saaty’s Analytic Hierarchy Process (AHP) with the pairwise comparisons (PC)
method, taking AHP as the only representation of PC. This study should be regarded as an interpre-
tation and clarification of past investigations of PC. In addition, this article is a reflection on general
PC research at a higher level of abstraction: the philosophy of science. It delves into the foundations
and implications of pairwise comparisons. Some results of this study are based on a recently pub-
lished work by Koczkodaj and Szwarc. Finally, open problems have also been reported for future
research.
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1. Introduction

The first use of the method of Pairwise Comparisons (PC method) is often attributed to Ramon Llull,
the 13th-century mystic and philosopher. His works created a basis for computation theory, considering
his acknowledged influence on Gottfried Leibniz. Llull’s contribution to PC, used for elections, was
recently mentioned in [1]. Fechner (see [2]) is regarded as the precursor of using PC in Psychometrics.
However, it was Waber who really used PC in such way. Similarly to Llull, Condorcet also used PC in
[3], for voting but only for the binary choice: win or lose. In both cases, however, the PC method was
not the main subject for the scientific investigation but rather its use. Thurstone (see [4]) proposed what
is known as “The Law of Comparative Judgments,” in 1927.

The seminal study [5] had a considerable impact on PC research, but led to AHP becoming a pro-
prietary eponym for PC. However, we argue that AHP should not be equated with PC. The fixed ratio
scale (the scale in this presentation) assumed in AHP makes it a subset of PC. PC is more general as it
does not assume any particular scale, and allows us for using even non-numerical rankings. For instance,
the non-numerical rankings of [6] are relations. The “scales” in [7] are arbitrary groups while the less
general abelian linearly ordered groups (alo-groups) were used in [8, 9].

There is a naming problem with PC. Regretfully, PC has been wrongly used in its singular form. It
is a rare form where an adjective is in the plural form. Similarly, it is unacceptable to replace the plural
form in “women’s world cup’’ by the singular form (woman). The plural form “comparisons” is needed
in front of a method or a matrix. The term PC should not be confused with the term “paired comparison’’
that is commonly used for the binary entries.

Comparing two entities (also called stimuli or properties) in pairs is irreducible since one entity
compared with itself trivially gives 1. Comparing only two entities gives us a PC matrix 2× 2 and may
be inaccurate but does not involve inconsistency.

Despite its long history, the PC method is still a very attractive subject for research. Ranking with a
reference set of alternatives, as in [10, 11], is an example of such explorations. “To pair or not to pair” is
not the question. “When and how to use PC” is the proper question.

2. Basic concepts of pairwise comparisons

Usually, we define an n× n pairwise comparisons matrix (abbreviated to PC matrix) simply as a square
matrix M = [mi,j ] such that mi,j are positive real numbers expressing ratios of entities Ei over Ej or
properties for all i, j = 1, . . . , n. A pairwise comparisons matrix M = [mi,j ] is called:

(r) reciprocal if mi,j = 1
mj,i

for all i, j = 1, . . . , n (then automatically mi,i = 1 for each i =
1, . . . , n);

(c) consistent (or transitive) if mi,j ·mj,k = mi,k for all i, j, k = 1, 2, . . . , n.

Sometimes, it is convenient to transform the PC matrixM = [mi,j ] by the logarithmic mapping to get the
matrix ln(M) = [ln(mi,j)] probably for the first time introduced in [12] and used in [13] for computing
a consistent approximation of a generalized PC matrix.
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For ai,j = ln(mi,j), we have mi,j = 1
mj,i

if and only if ai,j = −aj,i. Moreover, mi,j ·mj,k = mi,k

if and only if ai,j + aj,k = ai,k. Therefore, we may consider two kinds or reciprocities: multiplicative
reciprocity mi,j ∗mj,i = 1 for M and additive reciprocity ai,j +aj,i = 0 for ln(M). Analyzing the mul-
tiplicative consistency for M and the additive consistency for ln(M) is of considerable importance. In
[8], a unified framework for both multiplicative and additive reciprocity and consistency was introduced
by a general notion of a reciprocal PC matrix over an abelian linearly ordered group. In [7], the notion
of PC matrices over a group was introduced.

Let us recall that a group is an ordered pair 〈X,�〉, denoted briefly by X , where X is a set, while �
is a mapping from X ×X to X such that the following conditions are satisfied:

(g1) if a, b, c ∈ X , then (a� b)� c = a� (b� c) (associativity);

(g2) there exists exactly one element 1X ∈ X (called the identity element of the group) such that, for
each a ∈ X , the equality a� 1X = a holds;

(g3) for each a ∈ X , there exists a−1 ∈ X , called the inverse element of a, such that a� a−1 = 1X .

In addition, if a� b = b� a holds for all elements a, b of the group X , then the group is called abelian
or commutative.

Now, let X = 〈X,�〉 be a group and let M = [mi,j ] be an n × n matrix such that mi,j ∈ X for
all i, j ∈ {1, . . . , n}. Then we say that M is a square matrix over the group X . According to [7], the
matrix M is called a reciprocal PC matrix over the group X if mi,i = 1X and mj,i = m−1i,j for all
i, j ∈ {1, . . . , n}. The matrix M over X is called consistent if it satisfies the following consistency
(equivalently, transitivity) condition with respect to �:

mi,j �mj,k = mi,k,

for all i, j, k = 1, 2, . . . , n.

We denote the group of all positive real numbers equipped with their standard multiplication by R+.
Most applications of PC matrices have been found for PC matrices over the group R+. For this reason,
in the sequel, we assume that M is a reciprocal PC matrix over R+. Let M be of the form:

M =


1 m1,2 · · · m1,n

1
m1,2

1 · · · m2,n

...
...

...
...

1
m1,n

1
m2,n

· · · 1


where mi,j expresses a relative quantity, intensity, or preference of entity (or stimuli) Ei over Ej .

While every consistent matrix is reciprocal, the converse is false, in general. If the consistency
condition does not hold, the matrix is inconsistent (or intransitive).

Consistent matrices correspond to the ideal situation where exact values exist for the ratios of entities:
E1, . . . , En. For a consistent PC matrix, there is a vector w = [w1, . . . wn], unique up to a multiplicative
constant, which generates this matrix, i.e., the condition mij = wi/wj holds. We usually call w the
vector of weights.
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The main challenge for the PC method is the lack of consistency in the PC matrices, which in practice
often takes place – in terms of realistic input data, most PC matrices are inconsistent since “to err is
human”. Only simple or academic examples are fully consistent and for such cases, a simplified PC
matrix, proposed in [14], should be considered, as it requires only n− 1 comparisons.

Given an n × n matrix M , which is not consistent, the theory attempts to provide a consistent
n× n matrix M , which differs from matrix M “as little as possible”. Such approximation is acceptable
for applications when the inconsistency is at an acceptable level. Similarly to p-value in statistics, the
inconsistency acceptable level has to be set arbitrarily for each application. However, the threshold 1/3
turns to be acceptable for most applications.

Given any strictly positive real values vi, the PC matrix [vi/vj ] is always consistent. It is an important
observation since it implies that a problem of approximation is really a problem of a norm selection and
distance minimization. For the Euclidean norm, the vector of geometric means (equal to the principal
eigenvector for the transitive matrix) is the vector of weights which generates it. One should note that it
is also equal (when normalized) to an eigenvector corresponding to the principal eigenvalue. Needless to
say, only optimization methods can approximate the given matrix for the assumed norm as addressed in
Sec. 8. Such type of matrix is examined in [15] as an “error-free” PC matrix.

As it has been mentioned, the additive version of PC can be obtained by a logarithmic transformation.
It has been recently analyzed by Yuen in [16]. Non-numerical PC have been introduced by Janicki in [17]
and recently analyzed in [6] where the authors refer to the famous book [18] by the Nobelist K. Arrow
(without commenting on Arrow’s Impossibility Theorem) but the entire section devoted to compliance
with the Arrow’s consistency rules is in [19].

3. The ratio scale problem

A scale may be considered as a mapping from a set of qualitative assessments to the set of real numbers.
The qualitative assessments arise from comparing pairs of objects that have a natural order, and are
usually considered to form a constrained set. In the past, 7 ± 2 assessment gradations were considered
due to psychological limitations of human thinking [20] but the lower “magical numbers”, as low as 3,
have been recently considered (see [21]).

Following [22], we formalize the notion of a scale in the following way. Let Λ = { 0,±1, . . . ,±8 }
be the set of numbers representing qualitative assessments (see Table 1). We assume that for each pair of
objects (Ci, Cj) being compared with each other, a number λi,j ∈ Λ is assigned in the following way:

if the first object in the pair Ci is preferable to the second one Cj , then a positive number
from Λ is assigned; otherwise the assigned number from Λ is negative if i 6= j, and it is 0
for i = j.

Since PC are reciprocal, it is reasonable to assume that if Ci is preferable to Cj to a certain extent
expressed by λi,j ∈ Λ, then Cj is inferior compared to Ci with the same extent λj,i ∈ Λ by the degree
but of the opposite sign: λj,i = −λi,j .

A ratio scale is represented by a mapping f defined on Λ such that f(−λ) = 1
f(λ) for each λ ∈ Λ.

This condition ensures that scale values ai,j = f(λi,j) and aj,i = f(λj,i) corresponding to reciprocal
assessments are indeed reciprocal values:

ai,j · aj,i = f(λi,j) · f(λj,i) = f(λi,j) · f(−λi,j) = f(λi,j) ·
1

f(λi,j)
= 1.
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As an example, we consider AHP ratio scale [5] which is determined by the values 1/9, . . . , 1/2, 1,
2, . . . , 9. In the terms given above, AHP scale is represented by the following mapping:

fS(λ) = (1 + |λ|)sgnλ. (1)

Note that for λ ≥ 0, the function (1) is a linear function of λ.
In this section, we will review alternative scales for pairwise comparisons proposed in [23, 24, 25, 26]

and address the problem of choosing the most appropriate scale for a given scenario. The scales are given
as mappings defined on Λ.

The Ma-Zheng scale [23] is defined in the following way:

fMZ(λ) =

(
9

9− |λ|

)sgnλ

. (2)

The motivation for (2) was to propose a scale that would be linear for λ ≤ 0, in the same way as AHP
scale is linear for λ ≥ 0.

The Lootsma scale [24] was proposed in the context of the multiplicative AHP and is based on
psychological insights. It is defined as follows:

fL(λ) = cλ, (3)

where c > 1 is a scale parameter.
The Donegan-Dodd scale [25] was suggested to handle the most extreme assessments (λ = ±8 in

our notation). Its mapping is based on the inverse hyperbolic tangent function:

fDD(λ) = exp

[
tanh−1

(√
3|λ|
14

)]sgnλ
. (4)

The Salo-Hämäläinen scale [26] is related to so-called balanced scales and was designed to give more
uniform (‘balanced’) distribution of scale values compared to AHP scale. It is defined in the following
way:

fSH =

(
0.5 + |λ|s
0.5− |λ|s

)sgnλ

, (5)

where s is a scale parameter and is usually equal to 0.05 or 1/17.
A number of studies were carried out to compare the scales to each other and determine the most

suitable for practical use. According to [27], the Lootsma-like scale is the most appropriate based on
the scale transitivity criterion. The authors also describe a way to derive the proper value of the scale
parameter c. In [28], scales of Saaty, Ma-Zheng, Lootsma and Donegan-Dodd were compared to each
other using a Monte-Carlo simulation study. The criterion for comparison was the symmetry of the
priority value distribution; according to this criterion, the Ma-Zheng scale was optimal. The readers are
also encouraged to reference [29, 30, 22] for further investigation of the scale problem.

A mathematical proof that a small ratio scale (1 to 3) has the most desired mathematical properties
(e.g., convexity) was provided in [31]. However, it is not the only reason postulated in this study for
using the ratio scale in PC. The main reason arises from the natural language, by the use of comparative
adjectives (e.g., big→ bigger→ biggest).
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Table 1. Representation of qualitative assessments as integer numbers.

λ ∈ Λ Qualitative assessment

0 equivalence

2 weak superiority

4 strong superiority

6 very strong superiority

8 absolute superiority

1,3,5,7 intermediate assessments

The Fülöp’s constant was introduced in [32]. Subsequently, it was employed in [31] for the derivation
of the main result (the small scale). As proved in [31], there exists a0 > 0 such that for any a > 0, the
univariate function fa defined as:

fa(x) = (ex − a)2 +
(
e−x − 1/a

)2 (6)

is strictly convex if and only if 1/a0 ≤ a ≤ a0.

When the condition 1/a0 ≤ a ≤ a0 is fulfilled for all i,j, then fa can be transformed into the convex
programming problem:

min
n−1∑
i=1

fain(xi) +
n−2∑
i=1

n−1∑
j=i+1

faij (xij)

s.t. xi − xj − xij = 0, i = 1, . . . , n− 2, j = i+ 1, . . . , n− 1.

(7)

with a strictly convex objective function to be minimized (see [32], Proposition 2). It implies that the
programming problem (7) and the equivalent problem (6) have a unique solution which can be found
using standard local search methods. The mentioned constant equals to a0 = ((123 + 55

√
5)/2)1/4 =√

1
2

(
11 + 5

√
5
)
≈ 3.330191, what is a reasonable bound for real-life problems [32, 31].

However, an unbounded ratio scale is indispensable for measurable entities such as distances, areas,
or temperatures if the precise measurements are available or could be obtained. There is an ongoing
dispute about ratio scales for entities lacking the “unit” (e.g., emotions or safety). Usually, the ratio
scale is assumed as arbitrary and the Likert scale is usually a ratio scale with small values that are “close
enough” to 3, on each branch (negative and positive) as Fig. 1 demonstrates.

Figure 1. Comparing two scale items.
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For the following PC matrix of the size 3 × 3:

M3 =

 1 9 x

1/9 1 9

1/x 1/9 1


there is no such x in the AHP scale that the matrix M3 is consistent. The sum of sets A = {1, . . . , 9}
and B = { 1n : n ∈ A} of AHP matrices’ elements is not closed under the multiplication (e.g., 9 × 9
does not belong to the sum of sets). It means that the set of values in A ∪ B fails to create a group or
even the weakest algebraic structure, which is a magma (or groupoid). Evidently, it is not a good news
from the mathematical point of view for developing any theoretical foundations.

Unfortunately, the same reasoning does apply to any other fixed value of the upper bound for a rating
scale. Evidently, the scale [1,∞) (and its inverse (0, 1]) is a scale which does not suffer from the above
lack of the mathematical closure problem. It appears that such a scale is consistent with the zero, one,
and infinity rule often used in computer science having the interpretation of: the only reasonable numbers
are zero, one, and infinity [33].

The 0-1-∞ rule implies that we should not impose arbitrary limits on the number of instances of a
particular entity in the design of algorithms or heuristics. If more than a single instance of it is allowed,
then the size should not have a fixed limit. Certainly, practicality may impose limits but this should be
done by design and necessity rather than chance. Binary alternatives are the most commonly used in
the decision making process (e.g., go left or right, buy or sell, pass or fail, etc.). There are well-defined
cardinalities other than zero, one, and the arbitrary cardinality (represented by ∞ in the above rule).
Most Indo-European languages have developed a concept of pairs or couples. It is also demonstrated by:
“This” and “Not this” or “This” and “The other,” or “One way” and “The other way”. Obviously, all
computer technology is based on the binary system.

4. The eigenvalue problem

For the Euclidean norm, the vector of geometric means is the best approximation to a consistent ma-
trix. However, the “best” approximation of an inconsistent PC matrix is not generated by the vector of
geometric means or by the eigenvector, although both are very accurate approximations for small incon-
sistencies. The problem is that no one actually knows “how small is small,” although it should not be a
surprise since a similar problem can be found in statistics with the p-value and α-value.

It is worth noticing that the normalized vector of the geometric means and the normalized eigenvector
(corresponding to the principal eigenvalue) are identical for a consistent PC matrix. The Monte Carlo
study was conducted to verify whether the eigenvector approximation is better than the geometric means
as proposed in [34], and it disproved such a claim on the basis of 1,000,000 matrices. However, its
proponent still insists on the superiority of an eigenvector solution although Example 1, represented
by Table 1 in [35], is better approximated by the geometric means than by an eigenvector. The same
reasoning is applicable to most examples in Table 2.

The eigenvector approximation was criticized in the 1980s when the geometric mean method was
proposed in [12]. More recently, better argumentation was used in [36]. In [37], it was established
that the geometric mean is the only method for deriving weights from multiplicative PC that satisfy
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fundamental consistency requirements. According to [37], it is immune to the scale-inversion as well as
to rank reversal.

The compelling argument against the eigenvector “superiority” is provided by John Fichtner in his
1984 report (see [38]). His eigenvector metric was misused by many researchers who have cited it.
Fichtner never claimed that his eigenvector distance should be used instead of the Euclidean distance.

Figure 2. Excerpt from Fichtner’s 1984 report.

In fact, Fichtner’s 1984 report findings have been misused as Fig. 2 so well demonstrates. The
Fichtner’s distance for eigenvectors between PC matrices A and B of the same degree n > 2 was
defined on pages 37-38 of [38] as follows:

δ(A,B) =
√

(w1(A)− w1(B))2 + ...+ (wn(A)− wn(B))2

+
1

2(n− 1)

∣∣∣λ(A)max − λ(B)
max

∣∣∣
+

1

2(n− 1)

∣∣∣λ(A)max + λ(B)
max − 2n

∣∣∣ ·{ 0 if A = B

1 if A 6= B

where:
wi(A) and wi(B) are, respectively, the i-th components of the normalized principal eigenvectors of PC

matrix A and of PC matrix B;

λ
(A)
max and λ(B)

max are the corresponding principal eigenvalues;

Note: the above excerpt was taken from an old typewritten manuscript and transcribed as accurately as
possible.

We leave it to the readers to assess whether it is “simpler and more accurate” than the Euclidean
distance.

5. The inconsistency concept

Erroneously, [5] is often credited for providing the first consistency definition of a PC matrix A. In fact,
the condition “if and only if ai,j · aj,k = ai,k for i, j, k = 1, 2, ..., n.” was defined and examined before
1977 by at least these four studies published between 1939 and 1961: [39, 34, 40, 41].
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According to [42], a single triad (x, y, z) and its inconsistency indicator ii are expected to have the
following properties:

(A.1) ii(x, y, z) = 0 if and only if y = x · z,

(A.2) ii(x, y, z) ∈ [0, 1) - the “complete inconsistency” (represented by 1) cannot be achieved,

(A.3) for a consistent triad ii(x, y, z) = 0 with xz = y, increasing or decreasing x, y, z results in
increasing ii(x, y, z).

The third axiom can be summarized by “the further we go away from y = x · z, the bigger is the
inconsistency value”. However, the formal specification of this axiom is not as easy as it seems to be and
an independent study on it is under review. In [43], the inconsistency indicator is introduced for a triad
(x, y, z) as:

ii(x, y, z) = 1−min

{
y

xz
,
xz

y

}
.

It is equivalent to:
ii(x, y, z) = 1− e−|ln(

y
xz )|.

ii is extended to a PC matrix by max for all triads in it and refereed to asKii (Koczkodaj’s inconsistency
indicator). It is important to note here that the definition of Kii allows us to localize the inconsistency
in a PC matrix.

Let us look at the following two examples from [42]:

• ii(1.5, 2, 2.5) will increase if 1.5 or 2.5 are increased, since 1.5*2.5 is already greater than 2. On
the other hand, decreasing 2 should also increase the inconsistency.

• ii(1.5, 2.5, 1.2) will increase if 2.5 is increased, since it is greater than 1.5*1.2=1.8, but decreasing
1.5 or 1.2 should also increase inconsistency for the same reason.

In [5], the consistency index (CI) was proposed as a scaled deviation of the difference between PC
matrix size and the principal eigenvalue:

CI =
λmax − n
n− 1

with the highly disputable acceptance threshold of 10% (later on decreased for a higher size of n).

The corner PC matrix CPC is a counter-example for the incorrectness of the eigenvalue-based incon-
sistency with the mathematical reasoning in [42]. Having x > 1, we set CPC[1, n] := x, CPC[n, 1] :=
1/x and 1’s in as all remaining CPC elements. It may seem that there is only one triad but in fact, there are
n−1 of them. It is easy to see thatKii = 1−1/x and is invariant of nwhileCI changes with n and its up-
per bound is estimated in [42] to x/n2 hence no matter how large x is assumed, there is such n that CI is
acceptable despite the presence of n−1 triads (1, x, 1). In particular, there may be triads (1, 106, 1) where
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the consistency condition requires 1 ·1 to be 1 and it is equal to 106 or more and CI is still below any as-
sumed threshold. CPC Matrix is not just a curiosity. Another counter example, FPC matrix is demon-
strated in Section 6 [42] with x > 1 above the main diagonal and 1/x below the main diagonal. Consid-
ering x to be a real number, the cardinality of all possible triads in a CPC matrix n×n isO(n) (O(n3) for
FPC matrix) but the set of all values for x, hence all possible triads (1, x, 1), is of cardinality 2ℵ0 in both
cases.

It seems that all inconsistency indicators, based on “central tendency”, suffer from the similar prob-
lem because the consistency condition has (by the definition) the requirement “for all triads” and with
the growing PC matrix size (n −→ ∞), the value of inconsistency indicator vanishes but the local esti-
mation error does not. If we accept the inconsistency “vanishing problem” as normal, by the same logic,
we should not worry about one “nuke” left behind by the collapsed Great Empire since it is only one lost
weapon for approximately 7,000,000,000 inhabitants of this planet. The nuke must be located and possi-
bly destroyed. The same goes for an inconsistency. Once located and found as unacceptable, the incon-
sistency must be reduced before any further computations take place. Ignoring the unacceptable incon-
sistency and computing the approximation is as incorrect as the following “proof”. Let us assume x = 0
giving us x = 2∗x since 0 = 2∗0. If so, we can simplify it by dividing both side of the equation x = 2∗x
by x, getting 0 = 1, which we know is not exactly so. Our error comes from knowing that x = 0 and
dividing over it. It should never take place. Similarly, we should not use unacceptably large inconsistent
assessment to estimate our solution but AHP (and other inconsistency based on ‘central tendency”) ig-
nores such principle. As a consequence, an error of the arbitrarily large value is tolerated as demonstrated
above.

The opponents of the above examples may say: “...but dividing by 0 is an exceptional phenomenon”.
Apparently, 1

10−n is not just one case. It generates arbitrary large values for growing n, although the
divisor is not exactly 0 and there are∞ of them. Drawing mechanical conclusions, based on the “central
tendency,” may be risky, as the following example demonstrates. Let us look at the average weight of
80 kg (200 lbs) in a given population of 100 men. It does not imply that there is even a single man with
the weight of 80 kg nor near to that average. For example, it may happen that 50 men may each weigh
70 kg and 50 weigh 90 kg, which results in average of 80 kg. In the case of inconsistency indicators, the
unacceptably high inconsistency in one triad may not contribute much to “the average” but it is unaccept-
able. Indeed, most of the local approximation error aberrations occur and the argument that “we only lost
one nuclear weapon” (which may be “accidentally found” by terrorists) is unacceptable to most of us.
However, it does take place for the eigenvalue-based inconsistency as demonstrated by [42] for the CPC
counter-example.

Common sense dictates a simple rule: “locate the worse inconsistency and inspect it; if unaccept-
able, reduce it”. Certainly, if we are unable to reduce the inconsistency or there is an important reason
(e.g., time) to continue with the inconsistency, that may do so. It is also important to notice that there
are no inconsistencies in the simplified version of PC, recently introduced in [14]. However, the zero
inconsistency indicator does not guarantee that assessments are accurate. The consistent (or doctored
data) ignorance can give result in 0 inconsistency. In fact, playing safe and giving all 1s for all entries of
the entire PC matrix gives 0 inconsistency, but may be a sign of the total ignorance, where everything is
of equal importance. Certainly, everything may be of equal (or unknown) importance and in such case,
all PC matrix entries should be equal to one.
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6. The inconsistency reduction process

Localizing the inconsistency was proposed in [43]. The consistency-driven process was postulated since
it comes from the GIGO (garbage-in, garbage-out) principle and common sense. However, it is still not
certain whether we should begin the reduction process, starting with the worse triad (as the common
sense may dictate) or to improve the triad with the smallest inconsistency. In the second case, smaller
errors may propagate through the PC matrix. A Monte Carlo study has been launched and the preliminary
findings support the foreknowledge in 1993.

It is safe to assume that processing (e.g., approximating) random numbers gives random results. In
the case of PC, the “randomness” of the input is associated with the inconsistency. It is evidenced in
Fig. 3.

Figure 3. An inconsistent triad (2,5,3)

If we assume that A/B = 2 and B/C = 3, evidently A/C cannot be 5 but rather 6. The problem is
that these three comparisons might have been conducted with the help of the Internet, on three different
continents, based on the “undisputed taste” (as earlier noted). No one can assert which of these three
comparisons is (or is not) accurate.

The illustration of the inconsistency is even more drastic by the PC matrix M3, which is generated
by the triad (2, 1/2, 2). It gives unnormalized weights v = [1, 1, 1] ([1/3, 1/3, 1/3] in its normalized
form). Vector v generates a trivial PC matrix with all entries equal to 1 representing ignorance (lack of
knowledge). For this reason, we have to improve all individual triads. Figuring out which strategy should
be employed, is the key issue for future research.

So far, many PC method studies fail to identify the real problem with verification of the approxi-
mation accuracy. When we try to verify results on real examples related to subjective data (say, public
satisfaction), how can we be sure what is and what is not “the right solution”? After all, it is said that the
taste is indisputable and few academic examples prove nothing.

The reduction process in [43, 44] was based on the common sense approach. It called for finding
the most inconsistent triad and reducing the inconsistency in this triad. The reduction of the triad with
the smallest inconsistency is another strategy. Why? It is suspected that the error propagation may be
smaller than the triad with the worst inconsistency. It is probably impossible to provide an analytical
reasoning why an inconsistency is undesirable (other than the GIGO adage but is it not a proof). It is not
even easy to conduct a Monte Carlo experimentation to support it although such preliminary study was
conducted (see [45]) with the randomly generated images for its area estimation.
“Summary of findings” in [46] includes:
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“The practical implications of identity (6) is that the numerical estimates produced by Saaty’s
eigenvalue-based method and the geometric mean procedure of de Jong (1984) and others
should be close to each other when a respondent’s judgments are not too far from being
consistent.”

Identity (6) is ŵ = ˆ̂w + O(σ2) where wi are parameters (eigenvector or geometric means) and
σ2 > 0 is their common variance. However, the old adage that “one bad apple spoils the barrel” seems
to be more applicable here: even one massively inconsistent triad may contribute to significant errors.
An approximation of a PC matrix is meaningful, only if the initial inconsistency is acceptable (that is,
located, brought under control and/or reduced to a certain predefined minimum; in our analogy, always
remove an overripe fruit promptly if it is possible to find it).

In practical applications, a high value of the inconsistency indicator is a “red flag,” or a sign of
potential problems. A distance-based inconsistency reduction algorithm focuses, at each step, on an in-
consistent triad and “corrects” it by replacing it with a consistent (or, more generally, a less inconsistent)
triad. It resembles “Whac-a-Mole,” a popular arcade game. One difference is that instead of a mole, we
have three array elements, as explained above. After hitting the mole (which generally results in some
other “moles” appearing), the next triad is selected according to some rule (which may be for example
the greedy algorithm) and the process is repeated. Numerous practical implementations (e.g., a hazard
ratio system for abandoned mines in Northern Ontario) have shown that the inconsistency converges
relatively quickly. However, the need for rigorous proof of the convergence (that is, showing that the
whacked moles always have the tendency of coming out less and less eagerly) was evident. An approx-
imation of a PC matrix is meaningful only if the inconsistency in it is acceptable. This means that we
need to localize the inconsistency and reduce it to a certain predefined minimum, if it is too high.

7. Not-so-inconsistent matrices and Monte Carlo experiments

Using completely random PC matrices for testing has very little scientific merits, since they are simply
random numbers and defy all principles of learning (machine or natural). Common sense dictates to use
matrices somehow inconsistent but not just a proverbial “bunch of random numbers”. We will call such
a PC matrix “not-so-inconsistent” (NSI) PC matrix. The NSI matrix was defined in [47] as follows. We
obtain an NSI PC matrix M from a random vector v with positive coordinates by: M = [vi/vj ] where
i, j = 1, 2, . . . , n. We deviate M by random multipliers mij := mij ∗ rand().

NSI PC matrices have been recently used in [48] to verify how quick is the convergence to the
consistency by the reduction process. The results were very positive. The number of iterations to reduce
the inconsistency below the accepted level (assumed as 1/3 for the distance-based inconsistency) were
10 at the most.

8. Deriving priorities from PC matrices

In PC we compare two elements, and assign a value, which represents an assessment of the relative
preference of Ei over Ej . If Ei is preferred to Ej then aij > 1, otherwise 0 < aij < 1 . A full
set of assessments for n elements requires n(n − 1)/2 comparisons. The eigenvector method (EV),
proposed in [5], is based on the Perron-Frobenius theorem. It provided a proof that the right principal
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eigenvector of A can be used as a priority vector, so the EV solves the equation: Aw = λmaxw, where
λmax is the principal eigenvalue of A. However, the EV method has numerous drawbacks, discussed in
the previous sections. Numerous alternative prioritization methods have been proposed. Many are based
on the optimization approach. These methods need an objective function, which measures the accuracy
of the approximation of the initial comparison assessments. Thus, the problem of priority derivation is
formulated as an optimization task of minimizing the objective function, subject to normalization and
possible additional constraints.

The Direct Least Squares (DLS) method (probably introduced in [12]) is based on the assumption
that the errors between the initial assessments and solution ratios should be minimized, and therefore
uses the Euclidean distance metric (or its square) as an objective function. The prioritization task is
formulated as a constrained optimization problem:

MinED =

 n∑
i=1

n∑
j=1

(aij − wi/wj)2
1/2

subject to:
∑n

i=1wi = 1, wi > 0.

On page 312 in [49], authors state:

“Remark: The most frequently used metric to measure closeness and accuracy in n-dimensional
spaces is the Euclidean metric.”

Common sense dictates that there is a reason why the Euclidean metric is the most frequently used.
It has been used for hundreds of years since it is simple, elegant and accurate. The above quotation was
not only true in 1984 but it is still true at the time of this study (after 31 years). It is evident why authors
followed it with an “explanation”:

“However, the Euclidean metric does not address the question of inconsistency.”

Common sense dictates that no approximation can really give a satisfactory solution for heavily
polluted data, hence the inconsistency analysis should precede any approximation, as discussed in former
sections. With the proper inconsistency analysis, MinED is the most practical solution since it is simple
and accurate. After all, the statistical results (based on 1,000,000 randomly generated case in [47] and
numerous smaller Monte Carlo experimentation) support it.

9. Notable applications

The number of applications of PC is ever growing. It is currently one of a few valid methods for pro-
cessing subjective data. In the past, the PC method was used for decision making on the national level,
related to nuclear weapons or energy [50]. Certainly, making such decisions must be guided by common
sense “rules” and GIGO is one of them. In [51] the authors propose a research program for developing a
formal framework for ranking procedures based on the PC method. They also provide a case study based
on [52].

It is also important to point out that one of the sizable countries in the European Union has already
passed a law to use PCs for evaluations at the national level, as documented in [53], where scientific
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entities have been evaluated. Credits for introducing PC to the ministerial regulations in Poland should
be given to Prof. R. Slowinskii, a Member of the Polish Academy of Science.

10. Conclusions

There is still much to be done in PC. The biggest challenge is not just the technology: hardware and
software, but rather the theory itself. However, complicating the existing theory is not a solution. The
“best practices,” as they are often used in the Software Engineering approach and more Monte Carlo
experimentations are needed.

Much has been done in this direction but more research is definitely still needed. Firstly, the input
values should be extended to indicate the certainty of the assessment. It seems that fuzzy logic is the best
approach to express uncertainty. Although the fuzzy logic is widely accepted for modeling uncertainly
and approximate reasoning, Saaty vigorously opposed its use in two of his publications by using “On
the invalidity of fuzzifying numerical judgments” in [54] and “There Is No Mathematical Validity for
Using Fuzzy Number Crunching” in [55], despite hundreds of well-documented successful applications
(e.g., [56] with 695 citations as of 2015-03-27). The hierarchical classifier has not been given enough
attention. In 1960s and 1970s, the hierarchical approach was popularized by many researchers in systems
analysis. The top-down design (based on a hierarchical structure) was promoted by IBM researchers
Harlan Mills and Niklaus Wirth, in the late 1960s and the early 1970s. The top-down strategy results in
a hierarchical structure. Dijakstra may be the first researcher who examined the influence of hierarchy
to control complexity in [57] in 1969. The HIPO model (abbreviation for Hierarchical Input Process
Output model) was introduced by IBM in early 1970s in [58], with a follow-up book [59]. However,
the hierarchical classifier has been assumed rather than computed in most applications. The hierarchical
clustering seems to offer the best solution for a non-supervised learning.
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