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Abstract. The classification of the various image features or visual objects can be done by

the consistency-driven pairwise comparisons method based on their relative importance. A

key issue in the proposed approach is a weight based synthesis for combining various image

features. When compared with the traditional experience-based linear assignment method,

the proposed approach is more effective and easy to communicate.
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1 The method of pairwise comparisons

Kato introduced “content-based image retrieval (CBIR)” in 1992 [6] and Con-
dorcet used pairwise comparisons even earlier (in 1785) in [1] so these two meth-
ods are not new. The novelty of the present approach lies in the combined use
of the two methods.

Let us begin with an important case that highlights the dynamics associ-
ated with machine graphics and visual human identification. A person can be
identified by a number of features or characteristics. Such features include the
face specification (with some more specific sub-features), body shape, height,
or even hair. Needless to say, these features do not equally contribute to a
successful identification a person. Setting the relative importance of individual
features is not a trivial task, especially if there are many such features. This is
why we would like to bring to the attention of the machine graphics and vision
community the pairwise comparisons method.

The pairwise comparisons method was used by Condorcet in 1785 [1] for
his election method in which voters rank candidates in order of preference. A
Condorcet method is a voting system which uses matrices for particular pairwise
comparisons with rows representing each candidate as a runner and columns
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representing each candidate as an opponent. However, it was Fechner who
specified pairwise comparisons as a scientific method in 1860 although only
from the psychometric perspective (see [2]). Thurstone provided a mathematical
analysis of this method and called it the “law of comparative judgments” (LCJ)
in 1927 (see [3]). LCJ can be used to scale a collection of stimuli based on
simple comparisons between stimuli taken two at a time. Although Thurstone
referred to it as a law, it can be more appropriately identified as a measurement
model which could be of great use for machine vision. This model allows us
to synthesize diverse features involved in machine vision, such as the above
mentioned human identification problem.

The next milestone in pairwise comparisons was the introduction of a hi-
erarchy in [4]. The hierarchy reduces the number of comparisons from Θ(n2)
to Θ(n lnn), making it finally applicable to a wide variety of problems. For
example, a moderate case with 49 features would require 1,176 comparisons
without a hierarchy and only 168 comparisons if these 49 features are arranged
into hierarchy by grouping seven features.

In the context of human visual identification, the introduction of a hierar-
chical structure can express, for example, hair identification as one of the nodes
with color, volume, hair split, hair line, and shape as its children. Tab. 1 il-
lustrates an example of a hierarchical model for a human identification. The

Table 1: Hierarchical model of a visual object identification (example)
Visual merit for human identification
height face hair body shape

↓
color

volume
line
split

shape

ingenuity of the pairwise comparisons method can be expressed by the old adage
“If you want to eat an elephant, do it in small bites.” By common sense, com-
paring features two at a time is easier than doing so all at once. The practical
ramifications of this approach is even more poignant in situations where direct
measurements are impossible. No one questions the practicality of measure-
ments by length (such as a meter or foot) or by mass/weight (kg or pounds)
since they are in common use. We have become so accustomed to having stan-
dards that sometimes we find it difficult to imagine anything without a standard
measure. In the case of a cancerous tumor, it may be shade gradation or general
shape. Although we may not be able to express the exact number of units of
a general shape, we may still express preference of one shape when compared
with another shape.

We will name the features or criteria C1, C2, . . . , Cn for recognizing visual
objects. The pairwise comparison method does not impose any limit on the
number of criteria. Setting the maximum on one level to seven is a widely



3

accepted heuristic since seven items gives 21 distinct pairs to compare. The
model is shown on the enclosed screen image after entering it into the Concluder
system, preliminary rearranging of the attributes and relating them to each
other.

The first step of pairwise comparisons is to establish the relative preference of
two criteria for situations in which it is impractical (or meaningless) to provide
the absolute estimations of the criteria. The relative comparison coefficients aij
for criteria C1, C2, . . . , Cn are expected to satisfy aii = 1 and aij = 1/aji. The
first constraint is related to comparing a given attribute with itself. The second
constraint is a consequence of the obvious fact that x/y = 1/(y/x) for x, y 6= 0.

A scale from 1 to 5, presented by Tab. 2, is used for expressing the importance
of one criterion over another criterion in a pair. Other scales also exists but all
of them are isomorphic.

Table 2: Comparison scale
Code Definition of intensity or importance

1 Equal or unknown importance
2 Weak importance of one over another
3 Moderate to essential importance
4 Demonstrated importance
5 Absolute importance

2.2 etc Intermediate importance

2 Classifying visual objects by the consistency-
driven pairwise comparisons method

It is not our goal to present the entire consistency-driven pairwise comparisons
method here, but to demonstrate how this approach can be applied to the
classification of visual objects. However, it is necessary to note that the partial
assessments of all pairs, entered into the pairwise comparisons matrix, need to
be synthesized into weights which can be subsequently used for all objects to be
classified or visualized. The solution to the above pairwise comparisons matrix
is a normalized vector of geometric means:

V = [v1, v2, ..., vn] where vi = n

√∏
j

aij . (1)

Not only is the vector of geometric means simpler to compute than an eigenvec-
tor but geometric means have obvious interpretation as the arithmetic means
in the corresponding space obtained by logarithmic mapping. It does make
sense to get ”average” of partial comparisons for getting the global weights.
The eigenvector’s lack of interpretation negatively impacts the confidence in a
decision making method from the application point of view.
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3 Inconsistency analysis

In the pairwise comparisons method, stimuli (for example, criteria or alterna-
tives) are presented in pairs to one or more experts. It is necessary to evaluate
individual alternatives, derive weights for the criteria, construct the overall rat-
ing of the alternatives, and finally identify the best alternative. Let us denote
the stimuli by A1, A2, . . . , An (n is the number of compared stimuli), their ac-
tual weights by γ1, γ2, . . . , γn, and the matrix of the ratios of all weights by
Γ = [γi/γj ]. The matrix of pairwise comparisons A = [aij ] represents the in-
tensities of assessments between individual pairs of alternatives (Ai versus Aj ,
for all i, j = 1, 2, ...n) chosen usually from a given scale. The elements aij are
considered to be estimates of the ratios γi/γj , where γ is the vector of actual
weights of the stimuli (which is what we want to find). All the ratios are pos-
itive and satisfy the reciprocity property aij = 1/aji, i, j = 1, 2, . . . , n. Saaty’s
eigenvector solution of Aγ = λγ always exists if the consistency (or transitiv-
ity) condition aijajk = aik for i, j, k = 1, . . . , n is satisfied. More details about
the problem of inconsistent assessments and definitions of inconsistency can be
found, for example, in [4, 7, 12].

The practical challenge confronting the pairwise comparisons method comes
from the lack of consistency of the pairwise comparisons matrices. Let us assume
that we have decided that the relative importance of considered criteria are as
given in the following matrix:

A =


1 1.5 2.5 3 3

2/3 1 1.5 1.5 3

2/5 2/3 1 1.5 2
1/3 2/3 2/3 1 1.5
1/3 1/3 1/2 2/3 1

 (2)

It is also shown on the second screen image (Fig. ??).
In essence, we need to find a consistent n×n matrix B which differs from ma-

trix A “as little as possible”. A possible solution to this problem was proposed
by Saaty [4] as the eigenvector of A corresponding to the largest eigenvalue of
A. However, the geometric means method produces results with high accuracy
when compared to the eigenvalue method (as evidenced by a Monte Carlo study
with ten million cases [8]), and is simpler to use. There is, however, a strong
relationship between accuracy and consistency. This is why the inconsistency
analysis is the main focus of the consistency-driven approach.

Our conjecture is that in making comparative assessments of intangible crite-
ria (such as body shape to hair), we face not only imprecise or inexact knowledge,
but also the inconsistency of our own subjective assessments. More importantly,
the improvement of knowledge elicitation by controlling the inconsistency of of-
ten highly subjective assessments is not only desirable, but even needed for the
refinement of our own expertise.

In practice, inconsistent assessments are unavoidable when at least three
criteria are independently compared against each other. For example, let us
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look closely at the three boxed criteria in matrix A. Eq. 3 gives inconsistency
0.4, which is considered (as a heuristic proposed in [7]) to be too high for
most practical cases. So, the most inconsistent triad has to be localized for
reconsideration of our assessments. By changing the relative importance of C1

against C5 from 3 to 4, we reduce the local inconsistency (of the triad in gray)
to 1/3 since there is another triad, shown by the underlined 1.5 values, which
has inconsistency indicator ii = 1/3.

The inconsistency concept is easier to explain by using three objects A, B,
and C and considering their areas. Let us assume the following initial assess-
ments: A/B is 2, B/C is 3, and A/C is 5. Evidently, the above assessments
violate A/C = A/B × B/C, so we may try to correct the last assessment to
6 since 2 × 3 gives 6. Unfortunately, we do not know which assessment is in-
accurate. In particular, as is frequently encountered in practice, each original
assessment might have been (and usually is) just a little inaccurate. In practice,
it is safe to assume that every assessment is somewhat inaccurate. Full consis-
tency can also be obtained by, for example, changing 3 to 2.5, since 2×2.5 gives
5.

The eigenvalue-based inconsistency (introduced in [4]) is a global character-
istic of a matrix and as such, it cannot localize the inconsistency. The distance-
based inconsistency (introduced by Koczkodaj in [7]) was independently ana-
lyzed and compared with the eigenvalue-based inconsistency in [12]. According
to [12], the distance-based inconsistency localizes the most inconsistent triad
(or triads) of objects. Basically, the distance-based inconsistency indicator is
defined as the maximum over all triads {aik, akj , aij} of elements of A (with
all indices i, j, k distinct) of their inconsistency indicators, which in turn are
defined as follows:

ii = min

(∣∣∣∣1− aij
aikakj

∣∣∣∣ , ∣∣∣∣1− aikakj
aij

∣∣∣∣) . (3)

Excluding the less common blind comparisons (which was handled separately
in [11]), the minimal number of objects which may cause inconsistency is three.
Comparing two objects often results in inaccuracy, that is, inexact knowledge,
however, it does not involve inconsistency.

The distance-based inconsistency is the minimum distance from three “ideal”
triads with no inconsistency when the “third” value is substituted using the
consistency condition aij × ajk = aik. Since we are not in a position of say-
ing which ratio is incorrect a priori, all three assessments must be reconsidered
before we attempt finding a consistent approximation for a given pairwise com-
parisons matrix. For details related to inconsistency analysis, see [7, 12]. The
stress on localizing the most inconsistent assessments is expressed by adding
the consistency-driven to the name of the method since it is easier to remedy
implications of an error (in judgment) when we are able to localize it. Proper-
ties of both eigenvalue-based and distance-based inconsistencies were examined
by a study published in the Journal of Global Optimization available on line
at www.springerlink.com/content/v2x539n054112451 (soon to be published as
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a hard copy) with a clear conclusion that the distance-based inconsistency is su-
perior because of the localizing property. Basically, when we can find an error,
we have good chance to fix it.

In general, there is no practical reason to continue decreasing the incon-
sistency indicator to zero. Only high values of the inconsistency indicator are
considered harmful. A very small value or zero may indicate data doctoring
rather than entering honest assessments. We know that “to err is human” but
when it is done, it is better to know where it could be hence the need for
inconsistency analysis and localization of the most inconsistent assessments.

Inconsistency analysis may look complicated, but the software developed
for this analysis (available from the first author’s web page) is facilitating it.
By decreasing or increasing values in a triad (displayed by the software), one
develops a very good orientation quickly.

In the case of the matrix shown in Eq. 2, after consistency analysis, the final
weights are calculated from Eq. 3 and the normalized vector is

[0.3771, 0.2380, 0.1685, 0.1304, 0.0860] . (4)

These weights, corresponding to criteria C1, C2, . . . , C5, should be applied (as
multipliers) to the values of attributes for each considered visual object, to
establish a merit index for each visual object that will be used for making an
identification decision.

Intuitively it is obvious that the “two at a time” approach has chances to
be more accurate than the method of assessing “everything at once”. However,
to show that the pairwise comparisons method is superior to the common sense
“by an expert’s eye” approach is not entirely a trivial task since there are many
hurdles to overcome. At the current stage of pairwise comparisons theory, there
is no possibility of proving, or disproving, by analytical means which method is
superior. The necessity of using computer technology for Monte Carlo experi-
ments in [9] and [10] may explain why the problem of accuracy had not been
properly addressed in the 1950’s or 1960’s when most of the theoretical work
on the pairwise comparisons method took place. However, the drop of estima-
tion error of lengths of randomly generated bars from approximately 15% to 5%
[9, 10] is a clear indication of potential gains in precision by using the pairwise
comparisons.

4 A fairly realistic example of using the pro-
posed classification for machine vision

There is no universally accepted definition of terrorism. There is, however,
a global consensus to curtail it. A potential application of our approach is
related to video surveillance. Ideally, individuals should not be differentiated
by shape, size, color or similar attributes but on the basis of suspicious behavior
such as excessive looking around, uncertain walk etc. Adding weights for these
additional “body language” characteristics is likely to help identifying terrorists.
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Video surveillance by closed-circuit television (CCTV) in public places is one
of the most popular ways of protection. The exact number of CCTV cameras
in the UK is not known but their number was estimated in 2002 to be about
500,000 in London and 4,200,000 in the UK. Needless to say, having staff watch
each of the 4.2 million CCTV is not practical. Unfortunately, technology, such
as face recognition software, has so far been disappointing in helping with this
task.

Tracking behavior of suspected individuals by looking for particular types
of body movement or particular types of clothing or baggage is likely to be
more efficient. The underlying assumption is that in public spaces people be-
have in a small number of predictable ways, and that terrorists deviate from
them. For this reason, this study may be useful for classification of suspected
objects and people in supermarkets, etc. (Note: The authors are not experts
in automated monitoring or human recognition. For this reason, the following
potential application of pairwise comparison is based more on common sense
than solid fact.)

According to [5], body language and tone of voice may convey, in some
circumstances involving highly emotional situations, as much as 93% of the
emotional state of an individual. Although this figure has been criticized as
being an overestimation, 50-60% is still a realistic and important contribution
as far as suspicious activities are concerned since they are highly correlated with
the communication of emotions. For the sake of discussion—subject to review
by the true experts on terrorism and/or human recognition—let us shortlist
some of the characteristics which CCTV may be able to provide based on the
machine vision input:

• excessive stopping,

• looking around,

• withdrawal movements of the head and shoulders,

• rapid body changes,

• number of contacts made,

• body angles,

• posture.

For the sake of exposition, we have selected only the first four of the above
characteristics for inclusion in Tab. 3 after comparing them in pairs.

All combinations of pairs (including the same criterion which gives identity)
create the pairwise comparisons matrix. For example, C2 to C3 according to
Tab. 3 is set to 2 (which is “Excessive stopping” and “Looking around”) and 1/2
below the main diagonal as a reciprocal value of 2. The inconsistency index ii
is computed as the maximum distance as 0.63. By changing C2/C3 to 1 (based
on new data or an expert’s opinion), we get Tab. 4.
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Table 3: Selected criteria for recognizing body language with their initial ratings
(example)

Criterion ID C1 C2 C3 C4
Excessive stopping C1 1 2 3/2 3

Looking around C2 1/2 1 2 7/2
Withdrawal movements of head and shoulders C3 2/3 1/2 1 2

Rapid body changes C4 1/3 2/7 1/2 1

Table 4: Improved ratings by inconsistency analysis of the input (example)
Criterion ID C1 C2 C3 C4

Excessive stopping C1 1 2 3/2 3
Looking around C2 1/2 1 1 7/2

Withdrawal movements of head and shoulders C3 2/3 1 1 2
Rapid body changes C4 1/3 2/7 1/2 1

Table 5: The final ratings (example)
Criterion ID C1 C2 C3 C4

Excessive stopping C1 1 2 3/2 3
Looking around C2 1/2 1 1 2

Withdrawal movements of head and shoulders C3 2/3 1 1 2
Rapid body changes C4 1/3 2 1/2 1

The new inconsistency index ii is computed as 0.57. By changing C3/C4 to
3, we get Tab. 5.

Based on equation (3), the final inconsistency indicator ii is computed as
0.25 which is below an acceptable threshold of 1/3 as explained in [7] and [12].

Weights are computed as normalized geometric means of rows as shown in
Tab. 6.

Table 6: Weights computed from the pairwise comparison ratings (example)
Criterion ID weight

Excessive stopping C1 0.3987
Looking around C2 0.2302

Withdrawal movements of head and shoulders C3 0.2474
Rapid body changes C4 0.1237

Shopping mall security and movie rating are other potential applications of
the proposed method for classifying visual objects. By changing preferences, we
may relax the level of acceptability of violence or sexual content depending on
the targeted audience.
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Conclusions

Finding a magic formula for the machine vision is nothing but a scientific dream.
It is more and more evident that it is not just a matter of time before such
magic formula is discovered but a long process of gradual improvements. As
time passes, the perception has changed from the magic formula expectations
to that “a little bit of this and a little bit of that” is needed to have a better
machine vision. The transition from the mechanistic approach to the one based
on “judgment call” or “expert opinion” is well supported by the pairwise com-
parisons approach in which the complexity of deciding on “everything at once”
is reduced to comparing two features against each other to establish their rela-
tive importance. This approach reduces the complexity to the bare minimum.
Two features are irreducible in practice since comparing the same feature with
itself according to importance or relevance does not much make sense as a trivial
case of the identity. However, pairwise comparisons require synthesis of partial
solutions into one global solution. This presentation shows that it can be done
and should be done.

Ideally, elements of a pairwise comparisons matrix should be based on by
measurements and/or statistical studies. For example, in the presented case
of detecting potentially criminal activities, values should be based on past ob-
servations and statistics. However, relying on opinions of a panel of experts is
an acceptable compromise solution until such statistics are available. In fact,
a jury in a justice system is an excellent example that such solution works in
practice and the society in not even remotely prepared to wait until a certain
number of similarly exotic criminal activities occur for an offended to be more
accurately punished. So, the authors would not be surprised that the proposed
temporary solution may become permanent for at least some cases in machine
vision. If adding the weight to certain features of potential criminal activities
improves the accuracy of recognizing such activities, why not use it regardless
of how the partial assessments have been obtained?

The strongest conclusions are probably induced by the “what if analysis.” In
the absence of computed weights by the proposed method of pairwise compar-
isons, one would either add all scores received for the individual characteristics
or tried to guess some weights. The authors are quite confident that in both
cases, the proposed method would classify visual method more accurately as it
is intuitively evident. If not, the calibration of weights by what in medicine is
known as “clinical trials” and/or manual tune up would improve the precision
(bringing the machine learning and artificial neural networks into the enhanced
model) for achieving our goal to improve the machine vision by a better way of
classifying visual objects.
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