
Selecting the best strategy in a software certification

process

V. Babiy, R. Janicki, A. Wassyng

Department of Computing and Software

McMaster University

Hamilton, ON., Canada

A. D. Bogobowicz

Faculty of Mathematics

and Natural Sciences

University of Cardinal

Stefan Wyszynski

Warsaw, Poland

W. W. Koczkodaj

Department of Mathematics

and Computer Science

Laurentian University

Sudbury, ON., Canada

Abstract—In this paper, we propose the use of the pairwise
comparisons (PC) method for selection of strategies for software
certification. This method can also be used to rank alternative
software certification strategies. The inconsistency analysis, pro-
vided by the PC method, improves the accuracy of the decision
making. Some current methods of software certification are
presented as they could be modified by the proposed method.
Areas of potential future research are discussed in order to make
the software certification process more feasible and acceptable
to industry.

I. INTRODUCTION

THE PROCESS of software certification is time consum-

ing and hence expensive. Most software systems, since

they are usually not critical, never go through a certification

process. Thus software is still being developed without any

consideration given to software certification [1]. In most mod-

ern systems, software is one of the most complex components.

At the same time it is considered as one of the most error

prone, despite the increasing demand for reliable software. As

a result, there is an apparent need for a viable dynamic soft-

ware certification process which can adjusted to the dynamic

demands of the rapidly evolving software industry [2]. We

propose to use the pairwise comparisons method as a means

of selecting a strategy for a software certification process. It is

quite likely that a certifying body would need to adjust their

certification strategy for almost every project. This is because

projects are different, especially when they are designed for

different domains. A better software certification strategy may

require a smaller amount of resources in order to adjust to

new scenarios. The use of this approach will provide insight

and understanding of the software certification process. For

every project, some properties will be more important than

others, while some properties will be completely irrelevant.

The pairwise comparisons method can provide a scheme where

the software certification strategy can be modified easily and

adapted to different scenarios.

II. PRODUCT BASED CERTIFICATION

The objective of product based certification is to deduce

whether the product conforms to requirements and provide an

evaluation of the developers abilities to produce new prod-

ucts while conforming to requirements [3]. ISO IEC 14598

provides instructions on how to evaluate a software product.

It uses the ISO IEC 9126 standard which describes how

general attributes can be subdivided into less general attributes.

In practice, both standards are applied in parallel. ISO IEC

14598 has four phases: defining the evaluation requirements,

identifying the evaluation, building the evaluation schedule and

executing the evaluation schedule. In defining the evaluation

requirements, attributes and sub-attributes for the product

evaluation are defined. These attributes and sub-attributes

could be taken from the McCall’s and Blundell’s quality

models [4], [5]. In identifying the evaluation, a collection

of metrics are defined for the evaluation of all attributes

and sub-attributes. In addition, metrics which will evaluate

relationships between a product and its environment are also

defined. While building the evaluation schedule, a detailed

evaluation plan is constructed. Finally, the evaluation schedule

is executed [6].

III. PROCESS BASED CERTIFICATION

The IEC 61508 (Functional safety of electri-

cal/electronic/programmable electronic safety-related systems)

and DO-178B (Software Considerations in Airborne Systems

and Equipment Certification) standards follow a process

based methodology and thus implicitly view the software

certification process as one that places the emphasis on

checking that an approved process was adhered to. These

standards describe the collection of practices which should

be followed during software development. They claim that

it would be easier to achieve validation and verification of

software by following the proposed practices. The IEC 61508

and DO-178B standards should be followed in correlation

with other regulations where they outline the significance

of software failure. The Development Assurance Levels

(DALs), from the domain of civil aerospace, are an example

of this correlation which dictate levels of criticality. The

automotive and European rail industries use Safety Integrity

Levels (SILs). The (DALs) and (SILs) are not similar in their

applications, despite the strong tendency for them both to

focus on risk reduction. The more critical the software, the

greater the need for risk reduction to be an essential attribute

of the software. Greater demands upon the (SILs) and (DALs)

Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 53–58

ISBN 978-83-60810-22-4

ISSN 1896-7094

978-83-60810-22-4/09/$25.00 c© 2010 IEEE 53

lead to stricter demands from the software development

process. The DO-178B argues that the verification of a

system should be accomplished through extensive testing,

while highly emphasizing the need for a good traceability

process and a manual review of the components [7]. The

verification process supported by DO-178B is subdivided into

four levels. There are twenty eight properties at the lowest

level, D. They validate tools, high level requirements, and

the configuration of the development process. The next level,

C, deals with twenty nine properties. They validate low level

requirements, testing and code coverage. The next level, B,

deals only with eight properties and logic. The highest level,

A, is responsible for sixty six attributes. At this level, while

the overall quality of the product is evaluated, a significant

focus is allocated to traceability [7].

IV. MOTIVATION

In situations where it is difficult or infeasible to use an

algorithm, we revert to the use of heuristics in order to find

solutions. There are a large number of attributes which should

be considered during the certification process. As projects

evolve rapidly and grow in complexity we need mechanisms

to assign consistent weights to attributes and properties. The

pairwise comparisons method is ideal for this task because

it can reduce inconsistencies while still maintaining some

acceptable margin of error. We describe a process on how

to assign consistent weights to attributes and properties. Once

inconsistency is minimal, preferably not zero, the developed

software certification strategy can be used as a dynamic entity

in the software certification process [8], [9].

V. PAIRWISE COMPARISONS METHOD

The pairwise comparisons method was used for the first

time in 1785 by Condorcet. He used this method in the

election process where voters rank candidates based on their

preference [10]. The method was a voting system which

used matrices for particular pairwise comparisons with rows

representing each candidate as a runner and columns rep-

resenting each candidate as an opponent. It was Fechner

who specified pairwise comparisons as a scientific method in

1860, although only from the psychometric perspective [11].

Thurstone, in 1927, provided a mathematical analysis of this

method and called it the law of comparative judgments [12].

The law of comparative judgments can be used to scale a

collection of attributes based on simple comparisons between

attributes taken two at a time. Although, Thurstone referred

to it as a law, it can be more appropriately identified as

a measurement model which could be of important use for

software certification. This model allows experts to synthesize

diverse procedures involved in software certification. The

hierarchy reduces the number of comparisons from O(n2)
to approximately O(n lnn), making it applicable to a wide

variety of problems. For example, a moderate case with 49

features would require 1,176 comparisons without a hierarchy

and only 168 comparisons if these 49 features are arranged

into a hierarchy by grouping seven features. Measurements

TABLE I: Comparison scale

Code Definition of intensity or importance

1 Equal or unknown importance
2 Weak importance of one over another
3 Moderate to essential importance
4 Demonstrated importance
5 Absolute importance
3.5 etc Intermediate importance

of length, such as a meter or foot, or by mass and weight are

commonly used and accepted. Society has become accustomed

to having standards for the majority of tasks, and sometimes

it is difficult to understand standards, which often occur in the

software industry, without an acceptable universal measuring

method. In the case of software certification, many strategies

may need to be developed for a single project. It is safe to

conclude that developing a single certification strategy is not

feasible and would not work for all types of projects, because

some projects have very little in common [9], [13], [14].

A. Inconsistency Analysis

The pairwise comparisons method does not impose any limit

on the number of criteria. Setting the maximum number of

entities on one level to seven is accepted as a heuristic, because

seven items gives 21 distinct pairs to compare. The first step in

pairwise comparisons is to establish the relative preference of

two criteria for situations in which it is impractical or irrelevant

to provide absolute estimations. The relative comparison coef-

ficients aij for criteria C1, C2, . . . , Cn are expected to satisfy

aii = 1 and aij = 1/aji. The first constraint is related to

comparing a given attribute with itself. The second constraint

is a consequence of the obvious fact that x/y = 1/(y/x) for
x, y 6= 0. A scale from 1 to 5, as demonstrated in Table I, is

used for expressing the importance of one attribute over others.

This is accomplished in a pair. Other scales also exists, but as

described by [8] larger values lose meaning in the comparison

process.

The absolute estimation of the weights defining the impor-

tance of analyzed software certification criteria is practically

unobtainable through either statistical or formal procedures. It

would be beneficial to have experiments which may contribute

to the accuracy of the estimates. However, it is unrealistic

to expect such experiments to take place. This approach

allows us to improve the processing of often subjective expert

assessments in the certification process. We propose the use

of a comparison scale that is demonstrated in Table I for the

subjective expression of relative preference.

Reference Criterion

C1 Functionality
C2 Reliability
C3 Usability
C4 Efficiency
C5 Maintainability
C6 Portability

54 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

Fig. 1: Relative importance of considered software quality

attributes

The values of relative importance, which are given in

Figure 1, have been entered by a single person solely for

demonstration of the method. We have used the concluder

software which can be download from the website that is

maintained by W. W. Koczkodaj. 1 The values were deduced

from the comparison in pairs. In a real scenario, the values

should be reasoned about by a team of experts. The attributes

have been taken from the ISO/IEC 9126 software standard.

They are also known as the top six level attributes, which are

considered to be key attributes for software quality [15]. Now

we consider the process to identify the best alternative. Let us

denote the attributes by A1, A2, . . . , An (n is the number of

compared attributes), their actual weights by γ1, γ2, . . . , γn,
and the matrix of the ratios of all weights by Γ = [γi/γj].
The matrix of pairwise comparisons M = [aij] represents

the assessments between individual pairs of alternatives (Mi

versus Mj, for all i, j = 1, 2, ...n) chosen usually from a

given scale. The elements aij are considered to be estimates

of the ratios γi/γj , where γ is the vector of actual weights

of the attributes. All the ratios are positive and satisfy the

reciprocity property aij = 1/aji, i, j = 1, 2, . . . , n. The

inconsistency concept was explained in [16]. The distance

based inconsistency indicator is defined as the maximum over

all triads {aik, akj , aij} of elements of M (with all indices

i, j, k distinct) of their inconsistency indicators. It is defined

as:

ii = min

(
∣

∣

∣

∣

1−
aij

aikakj

∣

∣

∣

∣

,

∣

∣

∣

∣

1−
aikakj
aij

∣

∣

∣

∣

)

(1)

Three is the minimal number of attributes which may cause

inconsistency. Comparing two attributes will often lead to

inaccuracy. The distance based inconsistency is the minimum

1website to download concluder: http://www.cs. laurentian.ca/wkoczkodaj/

distance from three ideal triads with no inconsistency when the

third value is substituted using the consistency condition aij×
ajk = aik. Since we are not in a position to determine which

ratio is incorrect, all three assessments must be reconsidered

before we attempt finding a consistent approximation for a

given pairwise comparisons matrix. The stress on localizing

the most inconsistent assessments is expressed by adding the

consistency-driven to the name of the method since it is easier

to remedy implications of an error when we are able to localize

it. There is no practical reason to continue decreasing the

inconsistency indicator to zero. Only the high values of the

inconsistency indicator are considered as unacceptable and

harmful. A very small value, or zero, may indicate a faked

result rather than a true estimate. The practical challenge in

working with the pairwise comparisons method comes from

the lack of consistency of the pairwise comparisons matrices.

Depending on the strategy it may take some time to get the

matrix consistent [9], [13], [14], [17].

VI. DEMONSTRATION OF THE MATRIX ADJUSTMENT

Assume the following attributes are considered for evalua-

tion: safety, security, reliability, resilience, robustness, know-

ing, testability, adaptability, modularity, complexity, portabil-

ity, usability, reusability, efficiency and learn-ability. They

are considered in [18] as a general group of attributes of

any software. All the attributes are subdivided into two

main categories, such as development and maintenance. These

groups are subdivided further and weights are assigned as

demonstrated in Table II. It is safe to assume that some areas

of software evolution are based on intuition and experience.

In situations where there is more than just one person making

decisions there is a greater possibility for inconsistency to

occur. Industry must rely on the subjective judgments of

experts in situations where practical methods of measure are

unknown [9], [13].

TABLE II: On the left inconsistent strategy and on the right

consistent strategy

Attribute Percent

development 80%

efficiency 17.40%
resilience 8.66%
robustness 4.96%
adaptability 3.78%

modularity 46.23%
complexity 26.58%

portability 14.06%

reusability 5.58%

reliability 16.37%
knowing 9.14%
safety 5.23%
security 2%

maintenance 20%

usability 11.49%
learn-ability 4.95%
testability 3.56%

Attribute Percent

development 80%

efficiency 17.40%
resilience 8.66%
robustness 4.96%
adaptability 3.78%

modularity 46.23%
complexity 19.19%

portability 17.29%

reusability 9.74%

reliability 16.37%
knowing 9.14%
safety 5.23%
security 2%

maintenance 20%

usability 11.49%
learn-ability 4.95%
testability 3.56%

WALDEMAR KOCZKODAJ, VOVA BABIY ET AL.: SELECTING THE BEST STRATEGY 55

Fig. 2: Inconsistent strategy.

Fig. 3: Consistent strategy.

From Table II we can evaluate the complexity, portability

and reusability triad where C1 = complexity, C2 = portability

and C3 = reusability. This triad has an inconsistency of 0.75

which is shown in Figure 4. As described in [8] it is not

recommended. According to [8] the acceptable inconsistency

is around 0.33. We have to adjust the values in order to

bring the inconsistency down. After the adjustment, and as

demonstrated in Figure 5, the inconsistency has decreased to

0.3 which is more acceptable.

In Table II, the weights of the attributes are allocated

based on the significance of each attribute, and the most

important criteria is complexity. After the correction we can

see a new percentage redistribution, which is shown in Ta-

ble II. The appropriate concluder’s strategy models which

demonstrate the percentage redistribution are given in Fig-

ure 2 and Figure 3. The redistribution could be evaluated

and adjusted by many experts in order to achieve a situation

in which the redistribution is accepted by all experts [19].

We think the consistency method is a preferred choice for

the construction of consistent software certification strategy.

The statistical evidence of the accuracy improvement with

pairwise comparisons from approximately 15% to 5% for

the one dimensional case (randomly generated bars) in [20],

and from approximately 25% to 15% for randomly gener-

ated 2D shapes [21] support our expectations of improve-

ment.

VII. CONCLUSIONS

This study demonstrates how the use of pairwise compar-

isons to relate such intangible software attributes as resilience

56 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

Fig. 4: Inconsistency analysis for a group with three attributes.

The inconsistency is 0.75.

Fig. 5: Inconsistency analysis for a group with three attributes.

The inconsistency is 0.3.

or reusability can result in computing weights that may be

useful in establishing a software certification strategy.

Software systems are developed for different purposes.

Properties such as safety, reliability and modularity could have

different priorities for different projects. Software providers

are obliged to provide a guarantee that their software will

operate reliably, but a certification process can not imply

nor guaranty that the software will not fail in all unexpected

situations [22].

The desire for companies to certify their software may

be driven by their ability to increase sales and to maintain

a competitive advantage in the industry. This comparative

advantage could be achieved if companies would develop

their products while conforming to the product’s requirements

and industry regulations [23], [24]. A more effective software

certification strategy, in terms of better resource allocation,

contributes to software development cost savings. We expect

that certification methods which were utilized for past projects

would fit, with some minor modifications, into our software

certification strategy where we use the pairwise comparisons

(PC) method. This may allow for a more accurate and consis-

tent software certification process.

ACKNOWLEDGMENTS

The authors would like to thank the Natural Science and

Engineering Council of Canada (NSERC) for its partial sup-

port of this work. V. Babiy, R. Janicki and A. Wassyng also

acknowledge the partial support of the Ontario Research Fund

- Research Excellence.

REFERENCES

[1] J. Oh, D. Park, B. Lee, J. Lee, E. Hong, and C. Wu, Certification of

Software Packages Using Hierarchical Classification, 2004, vol. 3026.

[2] R. Moraes, J. Dures, E. Martins, and H. Madeira, Component-

Based Software Certification Based on Experimental Risk Assessment.
Springer Berlin / Heidelberg, 2007.

[3] J. Souter, “Process certification and product testing coming together,”
in Software Quality Improvement Through Process Assessment, IEE

Colloquium, Mar 1992, pp. 5/1–5/6.

[4] N. E. Fenton and S. L. Pfleeger, Software Metrics, 2nd ed. 20 Park
Plaza, Boston, MA: PWS Publishing Company, 1997.

[5] J. K. Blundell, M. L. Hines, and J. Stach, “The measurement of software
design quality,” Annals of Software Engineering, vol. 4, no. 1, pp. 235–
255, 1997.

[6] K. Lee and S. J. Lee, “A quantitative evaluation model using the iso/iec
9126 quality model in the component based development process,”
Computational Science and Its Applications, pp. 917–926, 2006.

[7] T. P. Kelly, Improvements in System Safety. Springer London.

[8] W. W. Koczkodaj, “A new definition of consistency of pairwise compar-
isons,” Mathematical and computer modelling, vol. 18, no. 7, pp. 79–84,
1993.

[9] W. W. Koczkodaj and W. O. Mackakey, “Mineral-positional assessment
by consistency-driven pairwise comparisons,” Explor. Mining Geol.,
vol. 6, no. 1, pp. 23–33, 1997.

[10] M. J. A. N. Caritat, Marquis de Condorcet: Essai sur l’Application de

L’Analyse à la Probabilité des Décisions Rendues à la Pluraliste des
Voix. Imprimerie Royale., 1972.

[11] G. T. Fechner, Elements of Psychophysics. Rinehart and Winston, New
York, 1965.

[12] L. L. Thurstone, “Law of comparative judgements,” Psychological

Review, vol. 34, pp. 273–286.

[13] W. W. Koczkodaj, M. Orlowski, L. Wallenius, and R. M. Wilson, “A note
on using a consistency-driven approach to cd-rom selection,” Library

software review, vol. 16, no. 1, pp. 4–11, 1997.

[14] R. Janicki and W. W. Koczkodaj, “A weak order solution to a group
ranking and consistency-driven pairwise comparisons,” Applied Mathe-

matics and Computation, vol. 94, no. 2-3, pp. 227–241, 1998.

[15] A. Rae, P. Robert, and H. Hans-Ludwig, Software Evaluation for

Certification, 1st ed. New York, NY, USA: McGraw-Hill, Inc., 1994.

[16] S. Bozóki and T. Rapcsák, “On Saaty’s and Koczkodaj’s inconsistencies
of pairwise comparison matrices,” Journal of Global Optimization,
vol. 42, no. 2, pp. 157–175, 2007.

[17] R. Janicki, “Ranking with partial orders and pairwise comparisons,”
Lecture Notes in Computer Science, vol. 5009, pp. 442–451, 2008.

[18] I. Sommerville, Software Engineering, 8th ed. Edinburgh Gate, Harlow
Essex, CM20 2JE, England: Pearson Education Limited, 2007.

[19] W. Hasselbring and R. Reussner, “Toward trustworthy software sys-
tems,” Computer, vol. 39, no. 4, pp. 91–92, 2006.

[20] W. W. Koczkodaj, “Statistically accurate evidence of improved error rate
by pairwise comparisons,” Percept Mot Skills, vol. 82, pp. 43–48, 1996.

WALDEMAR KOCZKODAJ, VOVA BABIY ET AL.: SELECTING THE BEST STRATEGY 57

[21] P. Adamic, V. Babiy, R. Janicki, T. Kakiashvili, W. W. Koczkodaj, and
R. Tadeusiewicz, “Pairwise comparisons and visual perceptions of equal
area polygons,” Perceptual and Motor Skills, vol. 108, no. 1, pp. 37–42,
2009.

[22] J. Voas and K. Miller, “Software certification services: Encouraging trust
and reasonable expectations,” IT Professional, vol. 8, no. 5, pp. 39–44,
2006.

[23] F. G. Keith and I. Vertinsky, “Antecedents to certification of software
development processes,” in Standardization and Innovation in Informa-

tion Technology, 2007. SIIT 2007. 5th International Conference, Oct.
2007, pp. 81–90.

[24] P. Caliman, “Software product quality evaluation and certifica-
tion: the qseal consortium methodology,” http://www.cse.dcu.ie/ essis-

cope/sm4/qseal.doc., Aug. 2009.

58 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

