
Procedures, Functions and Triggers

Slides

• Anonymous PL/SQL programs: un-named database objects, submitted to PL/SQL

interpreter and run but not available to other users or called by other procedures.

• Named PL/SQL programs: Database objects that can be referenced by other programs and

can be used by other database users.

• Stored procedures – groups of SQL and PL/SQL statements – allow you to move code that

enforces business rules from your application to the database.

Performance gains due to two reasons:

1. Processing of complex business rules may be performed with the database – and
 therefore by the server.

2. Since the procedural code is stored within the database and is fairly static, you may
 benefit from reuse of the same queries within the database.

Named Program Units

Server-side program units: are stored in the database as database objects and execute on the
database server.

Advantages:

1. stored in a central location accessible to all database users,
2. always available whenever a database connection is made.

Disadvantages

1. forces all processing to be done on the database server.
2. If database server is very busy, the response time will be very slow

Client-side program units are stored in the file system of the client workstation and execute on
the client workstation.

 1

Program Unit
Type

Description Where Stored Where Executed

Procedure Can accept multiple
input parameters,
and returns multiple
output values

Operating system
file or database

Client-side or
server-side

Function Can accept multiple
input parameters
and returns a single
output value

Operating system
file or database

Client-side or
server-side

Library Contains code for
multiple related
procedures or
functions

Operating system
file or database
server

Client-side

Package Contains code for
multiple related
procedures,
functions and
variables and can be
made available to
other database users

Operating system
file or database
server

Client-side or
server-side

Trigger Contains code that
executes when a
specific database
action occurs, such
as inserting,
updating or deleting
records

Database server Server-side

Procedures and Functions

PROCEDURE procedure_name(parameter1, mode datatype, …, parameterN mode datatype)
IS
 Statements

FUNCTION procedure_name(parameter1, mode datatype, …, parameterN mode datatype)
IS
 Statements

Mode: how the parameter value can be changed in the program unit

 2

Mode Description
IN Parameter is passed to the program unit as a read-only value that cannot be changed

with the program unit
OUT Parameter is a write-only value that can only appear on the left side of an assignment

statement in the program unit
IN OUT Combination of IN and OUT; the parameter is passed to the program unit and its

value can be changed within the program unit

Required System Privileges

• In order to create a procedural object you must have the CREATE PROCEDURE system

privilege (part of the RESOURCE role)
• If in another user’s schema, must have CREATE ANY PROCEDURE system privilege.

Calling Program Units and Passing Parameters

• From within SQL*PLUS, a procedure can be executed by using EXECUTE command,

followed by the procedure name.

EXECUTE procedure_name(parameter1_value, parameter2_value,…);

EXECUTE New_Worker(‘Adah Talbot’);

• From within another procedure, function, package, or trigger, the procedure can be called

without the EXECUTE command.

• Formal parameters are the parameters that are declared in the header of the procedure.

• Actual parameters are the values placed in the procedure parameter list when the procedure

is called.

 3

PROCEDURE cal_gpa(student_id IN NUMBER, current_term_id IN NUMBER,
calculated_gpa OUT NUMBER) IS

Formal parameters: student_id, current_term_id, calculated_gpa

Execute cal_gpa(current_s_id, 4, current_gpa);

Actual parameters: current_s_id, 4, current_gpa

Procedures Vs. Functions

• Unlike procedures, functions can return a value to the caller.

Procedures Vs. Packages

• Packages are groups of procedures, functions, variables and SQL statements grouped

together into a single unit.

• To EXECUTE a procedure within a package, you must first list the package name, then the

procedure name:

EXECUTE Ledger_Package.New_Worker(‘Adah Talbot’);

• Packages allow multiple procedures to use the same variables and cursors.

• Procedures within packages may be available to the PUBLIC or they may be PRIVATE, in

which case they are only accessible via commands from within the package.

• Packages may also include commands that are to be executed each time the package is called,

regardless of the procedure or function called within the package.

 4

Creating Stored Procedures in SQL*Plus

Create Procedure Syntax

CREATE [or REPLACE] procedure [user.]procedure [(argument [IN | OUT | IN OUT]
 Datatype [, argument [IN | OUT | IN OUT] datatype] …)] {IS | AS}
 declarations
BEGIN
 program statements
EXCEPTION
 Exception handlers
END;

CREATE PROCEDURE new_Worker((Person_Name IN VARCHAR2) AS
 BEGIN
 INSERT into Worker (Name, Age, Lodging)
 values(Person_Name, NULL,NULL);
END;
/

CREATE OR REPLACE PROCEDURE update_inventory(current_inv_id IN
 INVENTORY.INV_ID%TYPE, update_quantity IN NUMBER, updated_qoh OUT
 NUMBER) AS
BEGIN
 -- update item QOH
 DBMS_OUTPUT.PUT_LINE('current_inv_id in procedure: ' || current_inv_id);
 UPDATE inventory
 SET qoh = qoh + update_quantity
 WHERE inv_id = current_inv_id;
 COMMIT;
 -- retrieve updated QOH into output parameter variable
END;
/

 5

SELECT qoh
FROM inventory
WHERE inv_id = 11668;

QOH

 16

EXECUTE update_inventory(11668, -3);

SELECT qoh FROM inventory
WHERE inv_id = 11668;

QOH

 13

Debugging Named Program Units in SQL*PLUS

CREATE OR REPLACE PROCEDURE update_inventory(current_inv_id IN
 INVENTORY.INV_ID%TYPE; update_quantity IN NUMBER) AS
BEGIN
 -- update item QOH
 UPDATE inventory
 SET qoh = qoh + update_quantity
 WHRE inv_id = current_inv_id;
 COMMIT;
 -- retrieve updated QOH into output parameter variable
END;
/

Warning: Procedure created with compilation errors

Figure 5-4. Named program unit with compile error

USER_ERRORS data dictionary view can be queried to get the compilations errors.

A summary of the listing of compile errors generated by the last program unit that was compiled,
can be displayed using SHOW ERRORS command.

 6

Figure 5-5. Using the SHOW ERRORS command to view compile error details

Place DBMS_OUTPUT.PUT_LINE statements in the procedure code to display variable values
during execution.

CREATE OR REPLACE PROCEDURE update_inventory(current_inv_id IN
 INVENTORY.INV_ID%TYPE, update_quantity IN NUMBER) AS
BEGIN
 -- update item QOH
 DBMS_OUTPUT.PUT_LINE('current_inv_id in procedure: ' || current_inv_id);
 DBMS_OUTPUT.PUT_LINE('current update_quantity value = ‘ || update_quantity);

 UPDATE inventory
 SET qoh = qoh + update_quantity
 WHERE inv_id = current_inv_id;
 COMMIT;
 -- retrieve updated QOH into output parameter variable
END;

 7

Creating Functions in SQL*PLUS

CREATE OR REPLACE FUNTION function_name(parameter1 mode datatype, parameter2
 mode datatype, …)
RETURN function_return_value_datatype IS variable declarations

Calling a funtion:

Variable_name := function_name(parameter1, parameter2, …);

Syntax for the body of a function

BEGIN
 Program statements
 RETURN return_value;
EXCEPTION
 Exception handlers
 RETURN exception_notice;
END;

The RETRUN EXCEPTION_NOTICE command instructs the function to display the exception
notice in the program that calls the function.

CREATE OR REPLACE FUNCTION age
 (input_dob IN DATE
)
 RETURN NUMBER IS
 calculated_age NUMBER;
BEGIN
 calculated_age := TRUNC((SYSDATE - input_dob)/365.25);
 RETURN calculated_age;
END;
/

Figure 5-7. Creating a user-defined function

 8

Anonymous program block calling function AGE

DECLARE
 current_s_dob DATE;
 current_age NUMBER;
BEGIN
 -- retrieve the student's DOB from the database
 SELECT s_dob
 INTO current_s_dob
 FROM student
 WHERE s_last = 'Black'
 AND s_first = 'Daniel';
 -- call the AGE function to determine the student's age
 current_age := AGE(current_s_dob);
 -- display the calculated value
 DBMS_OUTPUT.PUT_LINE('Student''s age is ' || current_age || ' years.');
END;
/

Student’s age is 21 years.

Figure 5-8. Calling the user-defined function

Function Purity Levels

The functions can be used directly in SQL commands, depending upon the purity level.

Inline functions – can be directly used within SQL commands, such as ROUND, TO_CHAR,
etc.

To be used as an inline function, a user-defined function must follow these basic rules:

• The function can only use IN mode parameter, since to be used in a SQL command, it
must return only a single value to the calling program.

• The data types of the function input variables and the function return value must be the
PL/SQL data type that correspond to the Oracle database data types (VARCHAR2,
CHAR, NUMBER, DATE, and so forth). You cannot use the PL/SQL data types that have
no corresponding database data types, such as BOOLEAN and BINARY_INTEGER.

• The function must be stored in the database as a database object.

 9

Purity Level Abbreviation Description
Writes No Database State WNDS Function does not perform any DML commands
Reads No Database State RNDS Function does not perform any SELECT

commands
Writes No Package State WNPS Function does not change values of any package

variables
Reads No Package State RNPS Function does not read any package variables

The function purity levels place the following restrictions on whether or not a function can be
called within a SQL command:

• All inline functions must meet the WNDS purity level.

• Inline functions stored on the database and executed from a SQL query in a program
running on the user’s workstation (like anonymous PL/SQL program) must meet the
RNPS and WNDS purity levels. In contrast, an inline function called from a SQL query in
a stored procedure does not have to meet these two purity levels.

• Functions called from the SELECT, VALUES, or SET clauses of a SQL query can write
package variables, so they do not need to meet the WNPS purity level. Functions called
from any other clause of a SQL query must meet the WNPS purity level.

• A function is only as pure as the purity of a subprogram it calls.

The AGE function can be used an inline function as it meets the criteria: it only contains IN
parameters, it returns a database data type, and it satisfies the RNPS and WNDS function purity
levels.

 10

SELECT s_first, s_last, AGE(s_DOB)
FROM student;

S_FIRST S_LAST AGE(S_DOB)
----------- ----------- -----------------
Sarah Miller 18
Brian Umato 18
Daniel Black 21
Amanda Mobley 19
Ruben Sanchez 19
Michael Cannoly 17

6 rows selected

Figure 5-9. Using the AGE function as an inline function

Stored Program Unit Object Privileges

GRANT EXECUTE ON unit_name TO username;

GRANT EXECUTE ON MY_Procedure TO Dora;

• If you do not grant EXECUTE privilege to users, then they must have the EXECUTE ANY

PROCEDURE system privilege.

GRANT EXECUTE ON age TO PUBLIC;

SELECT s_last, lhoward.age(s_dob)
FROM student;

S_LAST LHOWARD.AGE(S_DOB)
----------- ---------------------------------
Miller 18
Umato 18
Black 21
Mobley 19
Sanchez 19
Cannoly 17

6 rows selected.

Figure 5-10. Executing a function owned by another user

 11

Creating a Client-side Procedure in Procedure Builder

ALTER TABLE inventory
 ADD Inv_Value NUMBER(11,2);

PROCEDURE update_inv_value IS
 CURSOR inventory_cursor IS
 SELECT * from Inventory;

 Inventory_row inventory_cursor%ROWTYPE;
 Current_inv_value NUMBER(11,2);

BEGIN
 For Inventory_row IN inventory_cursor LOOP
 Current_inv_value := inventory_row.price * inventory_row.qoh;
 UPDATE Inventory
 SET inv_value := current_inv_value
 WHERE inv_id = inventory_row.inv_id;
 COMMIT;
 END LOOP;
END;
/

 12

Calling a Procedure and Passing Parameters

PROCEDURE Update_Inv_Value_Record (Current_Inv_Value IN NUMBER)
IS
 Current_Price NUMBER(5,2);
 Current_QOH NUMBER;
 New_Inv_Value NUMBER(9,2);

BEGIN
-- retrieve the current values
 SELECT price, qoh
 INTO Current_Price, Current_QOH
 FROM Inventory
 WHERE inv_id = Current_Inv_Value;

-- calculate the new inv_value
 New_Inv_Value := Current_Price* Current_QOH;
-- update the record
 UPDATE inventory
 SET inv_value = New_Inv_Value
 WHERE inv_id = Current_Inv_Value;
 COMMIT;
END;

Calling Procedure

PROCEDURE Update_QOH(Current_Inv_ID NUMBER, New_QOH NUMBER)
IS
BEGIN
 -- update QOH
 UPDATE inventory
 SET qoh = New_QOH
 WHERE inv_id = Current_Inv_ID;
 COMMIT;
 -- call procedure to update INV_VALUE
 Update_Inv_Value_Record(Current_Inv_ID);
END;

 13

Clearwater Traders Example:

Procedure named CREATE_NEW_ORDER, received customer ID, order source ID, method of
payment, inventory ID, and order quantity, then inserts the order information into the
CUST_ORDER table The procedure calls another procedure named
CREATE_NEW_ORDER_LINE and passes to it the values for the order ID, inventory ID, and
quantity ordered. The second procedure will then insert a new record into the ORDER_LINE
table.

Creating procedure CREATE_NEW_ORDER_LINE

CREATE SEQUENCE order_id_sequence
START WITH 1100;

PROCEDURE create_new_order_line(current_inv_id NUMBER, current_quantity NUMBER)
IS
BEGIN
 -- Insert new order line record
 INSERT INTO order_line VALUES(order_id_sequence.currval, current_inv_id,
 current_quantity);

 COMMIT;
END;

Creating procedure CREATE_NEW_ORDER

PROCEDURE CREATE_NEW_ORDER(current_cust_id NUMBER, current_meth_pmt
VARCHAR2, current_order_source_id NUMBER, current_inv_id NUMBER, current_quantity
NUMBER)
IS
BEGIN
 -- Insert the CUST_ORDER record
 INSERT INTO cust_order VALUES(order_id_sequence.nextval, SYSDATE,
 current_meth_pmt, current_cust_id, current_order_source_id);
 COMMIT;

 -- Call the procedure to insert the ORDER_LINE record
 CREATE_NEW_ORDER_LINE(current_inv_id, current_quantity);
END;

 14

To run the procedures:

PL/SQL> CREATE_NEW_ORDER(107, ‘CC’, 6, 11795, 1);
PL/SQL> SELECT *
 +> FROM cust_order;

ORDER_ID ORDER_DATE METH_PMT CUST_ID ORDER_SOURCE_ID
--------------- -------------------- ---------------- ------------ ---------------------------
 1057 29-MAY-03 CC 107 2
 1058 29-MAY-03 CC 232 6
 1059 31-MAY-03 CHECK 133 2
 1060 31-MAY-03 CC 154 3
 1061 01-JUN-03 CC 179 6
 1062 01-JUN-03 CC 179 3
 1100 13-DEC-00 CC 107 6

7 ROWS SELECTED.

PL/SQL> SELECT *
 +> FROM order_line
 +> WHERE order_id = 1100;

ORDER_ID INV_ID ORDER_QUANTITY
--------------- ------------ ---------------------------
 1100 11795 1

1 row selected.

 15

Functions

The function Balance_check returns status of the ‘Bought’ and ‘sold’ transactions for a Person in
the LEDGER table.

CREATE function Balance_check(Person_Name IN VARCHAR2)
 RETURN NUMBER
IS
 balance NUMBER(10,2);

BEGIN
 SELECT SUM(DECODE(Action, ‘Bought’, Amount, 0))
 - SUM(DECODE(Action, ‘sold’, Amount, 0))
 INTO balance
 FROM ledger
 WHERE person = Person_Name;
 RETURN(balance);
END;
/

FUNCTION Student_Age(Current_S_ID NUMBER)
 RETURN NUMBER
IS
 Current_Date DATE;
 Student_DOB DATE;
 Curent_Age NUMBER;

BEGIN
 Current_Date := SYSDATE;
 -- retrieve SDOB for SID
 SELECT s_dob
 INTO Student_DOB
 FROM student
 WHERE s_id = Current_S_ID;
 Current_Age := TRUNC((Current_Date – Student_DOB)/365);
 RETURN CurrentAge;
END;
/

 16

Calling a Function

PROCEDURE Update_Student_Data(Curr_S_ID NUMBER)
IS
 Current_Student_Age NUMBER(2);

BEGIN
 Current_Student_Age := Student_Age(Curr_S_ID);
END;

Program Unit Dependencies

When a procedure or function is compiled, the database objects that it references (such as tables,
views, or sequences) are verified to make sure that they exist and that the user has sufficient
object privileges to use the objects as specified in the program code.

 17

A program unit is directly dependent on an item if it references it directly within its procedure
code.

A program unit is indirectly dependent on an item if the item is referenced by an item that the
procedure references.

Data Dictionary views

DBA_DEPENDENCIES – dependency information for program units for all users

USER_DEPENDENCIES – dependency information for only the current user

ALL_DEPENDENCIES – dependency information for the current user, as well as dependency
information for program units that the current user has privileges to execute.

Column Name Description
OWNER Username of the program unit owner
NAME Program unit name in all uppercase characters
TYPE Program unit type (procedure, function, library, package, or

package body)
REFERENCED_OWNER Username of the owner of the referenced object
REFERENCED_NAME Name of the referenced object
REFERENCED_TYPE Object type (table, sequence, view, procedure, package)
REFERENCED_LINK_NAME The name of the database link (connect string) used to access

the referenced object. This column has a value only when the
referenced object is on a different Oracle database

To create a formatted report to query the USER_DEPENDENCIES view:

SET LINESIZE 100
SET PAGESIZE 25

COLUMN name HEADING ‘Name’ FORMAT A25
COLUMN type HEADING ‘Type’ FORMAT A10
COLUMN referenced_name HEADING ‘Referenced’ FORMAT A25
COLUMN referenced_type HEADING ‘ref. Type’ FORMAT A25

SELECT name, type, referenced_name, referenced_type
FROM USER_DEPENDENCIES
WHERE name = ‘CREATE_NEW_ORDER’;

 18

Name Type Reference Ref. Type
--------------------------------- -------------------- --------------------------------------- -----------------------
CREATE_NEW_ORDER PROCEDURE STANDARD PACKAGE
CREATE_NEW_ORDER PROCEDURE DBMS_STANDARD PACKAGE
CREATE_NEW_ORDER PROCEDURE CUST_ORDER TABLE
CREATE_NEW_ORDER PROCEDURE ORDER_ID_SEQUENCE NON-EXISTENT
CREATE_NEW_ORDER PROCEDURE CREATE_NEW_ORDER_LINE PROCEDURE
CREATE_NEW_ORDER PROCEDURE CREATE_NEW_ORDER_LINE NON-EXISTENT
CREATE_NEW_ORDER PROCEDURE ORDER_ID_SEQUENCE SEQUENCE

The Package Specification

PACKAGE <package name>
IS
 <variable declarations>;
 <cursor declarations>;
 <procedure and function declarations>;
END <package name>;

CURSOR <cursor name>
RETURN <cursor return row variable>
IS <cursor SELECT statement>;

PROCEDURE <procedure name>(param1 param1datatype, param2 param2datatype, …);

FUNCTION <function name>(param1 param1datatype, param2 param2datatype, …)
RETURN <return data type>;

PACKAGE Inventory_Package IS
 -- variable declaration
 Global_Inv_ID NUMBER(6);
 -- Program unit declarations
 Procedure Update_Inv_Value;
 Procedure Update_Inv_Value_Record;
 Procedure Update_QOH(Current_Inv_ID NUMBER, New_QOH NUMBER);
 END;

The Package Body

PACKAGE BODY <package name>
IS
<variable declarations>
<cursor specifications>
<module bodies>
END <package name>;

 19

PACKAGE BODY Inventory Package IS -- start of package body
 -- cursor declarations
 CURSOR Update_Inv_Cursor IS
 SELECT * from Inventory;
 -- variable declarations
 Inventory_Row Update_Inv_Cursor%ROWTYPE;
 Inventory_Value NUMBER(11,2);
 Current_Price NUMBER(5,2);
 Current_QOH NUMBER;
 New_Inv_Value NUMBER(9,2);

-- modules

PROCEDURE Update_Inv_Value IS
BEGIN
 For Inventory_Row IN Update_Inv_Cursor LOOP
 Inventory_Value := Inventory_Row.price * Inventory_Row.qoh;
 UPDATE Inventory
 SET inv_value = Inventory_Value
 WHERE inv_id = Inventory_Row.inv_id;
 COMMIT;
 END LOOP;
END;

PROCEDURE Update_Inv_Value_Record
IS
BEGIN
-- retrieve the current values
 SELECT price, qoh
 INTO Current_Price, Current_QOH
 FROM Inventory
 WHERE inv_id = Inventory_Package.Global_Inv_ID;

-- calculate the new inv_value
 New_Inv_Value := Current_Price* Current_QOH;
-- update the record
 UPDATE inventory
 SET inv_value = New_Inv_Value
 WHERE inv_id = Inventory_Package.Global_Inv_ID;
 COMMIT;
END;

 20

PROCEDURE Update_QOH(Current_Inv_ID NUMBER, New_QOH NUMBER)
IS
BEGIN
 -- assign global variable to value of input INV_ID
 Inventory_Package.Global_Inv_ID := Current_Inv_ID;
 -- update QOH
 UPDATE inventory
 SET qoh = New_QOH
 WHERE inv_id = Current_Inv_ID;
 COMMIT;
 -- call procedure to update INV_VALUE
 Update_Inv_Value_Record;
END;

END; -- end of package body

To run the Update_QOH procedure in the package and verify that it updated the record:

Inventory_Package.update_QOH(11669,10);

select invi_d, inv_value
 from inventory
where inv_id = 11669;

To create package specification using SQL*PLUS:

SQL> CREATE OR REPLACE PACKAGE order_package IS
 -- Declare public variables
 global_inv_id NUMBER(6);
 global_quantity NUMBER(6);

 -- declare program units
 PROCEDURE create_new_order(current_cust_id NUMBER, current_meth_pmt
 VARCHAR2, current_order_source_id NUMBER);
 PROCEDURE create_new_order_line;
END;
/

 21

To create the package body in SQL*PLUS:

SQL> CREATE OR REPLACE PACKAGE BODY order_package IS

PROCEDURE create_new_order(current_cust_id NUMBER, current_meth_pmt
 VARCHAR2, current_order_source_id NUMBER)
IS
BEGIN

 -- Insert the CUST_ORDER record
 INSERT INTO cust_order VALUES(order_id_sequence.nextval, SYSDATE,
 current_meth_pmt, current_cust_id, current_order_source_id);
 COMMIT;

END;

PROCEDURE create_new_order_line
IS
BEGIN

 -- Insert new order line record
 INSERT INTO order_line VALUES(order_id_sequence.currval, global_inv_id,
 global_quantity);

 COMMIT;

END;
END;
/

Referencing Package Items

To grant other users the privilege to execute a package:

GRANT EXECUTE ON package_name TO username;

To create the program to reference the package items:

 BEGIN
 -- Initialize package variables
 ORDER_PACKAGE.GLOBAL_INV_ID := 11668;
 ORDER_PACKAGE.GLOBAL-QUANTITY := 2;

 -- Call the procedures
 ORDER_PACKAGE.CREATE_NEW_ORDER(107, ‘CC’, 2);

ORDER_PACKAGE.CREATE_NEW_ORDER_LINE;
 END;
 /

 22

 SELECT *
 FROM cust_order;

ORDER_ID ORDER_DAT METH_PMT CUST_ID ORDER_SOURCE_ID
--------------- ----------------- ---------------- ------------- -----------------------------
 1057 29-MAY-03 CC 107 2
 1058 29-MAY-03 CC 232 6
 1059 31-MAY-03 CHECK 133 2
 1060 31-MAY-03 CC 154 3
 1061 01-JUN-03 CC 179 6
 1062 01-JUN-03 CC 179 3
 1100 13-DEC-00 CC 107 6
 1101 13-DEC-03 CC 107 2

8 rows selected

SELECT *
FROM order_line;

ORDER_ID INV_ID ORDER_QUANTITY
-------------- ---------- ----------------------------
 1057 11668 1
 1057 11800 2
 1058 11824 1
 1059 11846 1
 1059 11848 1
 1060 11798 2
 1061 11779 1
 1061 11780 1
 1062 11799 1
 1062 11669 3
 1100 11795 1
 1101 11668 2

Overloading Program Units in Packages

In a package, program units can be overloaded, which means that multiple program units with
the same name but different input parameters exist.

 23

To create the package specification:

PACKAGE enrollment_package IS
 PROCEDURE add_enrollment(current_s_id NUMBER, current_c_sec_id
 NUMBER);
 PROCEDURE add_enrollment(current_s_first VARCHAR2, current_s_last
 VARCHAR2, current_c_sec_id NUMBER);
END;

To create the package body:

PACKAGE BODY enrollment_package IS
 -- Procedure to insert enrollment record based on student ID
 PROCEDURE add_enrollment(current_s_id NUMBER, current_c_sec_id
 NUMBER)
 IS
 BEGIN
 INSERT INTO enrollment VALUES(current_s_id, current_c-sec_id,
 NULL);
 COMMIT;
 END;

 -- Procedure to insert enrollment record based on student first and last names
 PROCEDURE add_enrollment(current_s_first VARCHAR2, current_s_last
 VARCHAR2, current_c_sec_id NUMBER)
 IS
 Retrieved_s_id NUMBER;

BEGIN
 -- Retrieve student ID
 SELECT s_id
 INTO retrieved_s_id
 FROM student
 WHERE s_first = current_s_first
 AND s_last = current_s_last;

 INSERT INTO enrollment VALUES(retrieved-s_id, current_c_sec_id,
 NULL);
 COMMIT;
END;

 END;

 24

To test the overloaded procedures:

PL/SQL> ENROLLMENT_PACKAGE.ADD_ENROLLMENT(100, 1012);
PL/SQL> ENROLLMENT_PACKAGE.ADD_ENROLLMENT(‘Daniel’, ‘Black’,
 +> 1001);
PL/SQL> SELECT *
 +> FROM enrollment
 +> WHERE grade IS NULL;

S_ID C_SEC_ID GRADE
------ -------------- ------------

 102 1011
 102 1012
 103 1010
 103 1011
 104 1012
 104 1010
 105 1010
 105 1011
 100 1012
 102 1001

 10 rows selected

• You can overload two procedures that use the same number of parameters if the
parameters differ in data type. The following overloaded procedure declarations are legal:

PROCEDURE legal_overload(current_value1 NUMBER);
PROCEDURE legal_overload(current_value1 VARCHAR2);

• You cannot overload two procedures if they have the same number of parameters and the
parameters have the same data type and differ only in name. The following overloaded
procedure declarations are invalid:

PROCEDURE illegal_overload(current_value1 NUMBER);
PROCEDURE illegal_overload(current_value2 NUMBER);

• You cannot overload two procedures that use the same number of parameters if the
parameter data types come from the same data type family, such as numbers, or
characters. The following overloaded procedure declarations are invalid:

PROCEDURE illegal_overload(current_value1 CHAR);
PROCEDURE illegal_overload(current_value1 VARCAHR2);

 25

• You cannot overload two functions if their only differences are their return types. The
following overloaded function declarations are invalid:

FUNCTION illegal_overload RETURN NUMBER;
FUNCTION illegal_overload RETURN DATE;

Database Triggers

Database triggers are program units that execute in response to the database events of inserting,
updating, or deleting a record.

Triggers may be used to supplement declarative referential integrity, to enforce complex
business rules, to audit changes to data, or to signal to other programs that changes were made to
a table.

The code within a trigger body is made up of PL/SQL. The execution of triggers is transparent to
the users.

Difference between triggers and other program units

1. Triggers cannot accept input parameters

2. Program units have to be explicitly executed by typing the program unit name at the
command prompt or in a command in a calling procedure.

3. Trigger executes only when its triggering event occurs. When a trigger executes, it is
said to have fired.

Required System Privileges

To create a trigger on a table, you must be able to alter that table. So you must either own the
table, have ALTER privilege for the table, or have ALTER ANY TABLE system privilege.

Also you must have CREATE TRIGGER system privilege; to create triggers in another user’s
account (also called a schema), you must have CREATE ANY TRIGGER system privilege.

The CREATE TRIGGER system privilege is part of the RESOURCE role provided with
ORACLE.

 26

To alter a trigger, you must either own the trigger or have the ALTER ANY TRIGGER
system privilege.

You may also alter trigger by altering the tables they are based on.

Required Table Privileges

Triggers may reference tables other than the one that initiated the triggering event.

For example, if you use triggers to audit changes to data in the LEDGER table, then you may
insert a record into a different table (say, LEDGER_AUDIT) every time a record is changed in
LEDGER.

Types of Triggers

Type Values Description
Statement INSERT, DELETE,

UPDATE
Defines statements that causes trigger to fire

Timing BEFORE, AFTER Defines whether trigger fires before or after
statement is executed

Level ROW, STATEMENT Defines whether trigger fires once for each
triggering statement, or once for each row
affected by the triggering statement

Row-Level Triggers

Row-level triggers execute once for each row in a transaction.

They are created using the for each row clause in the create trigger command.

Create [or replace] trigger [user.]trigger
 {before | after | instead of}
 {delete | insert | update [of column [, column] …] }
 [or {delete | insert | update [of column [, column] …] }] …
on [user.] {Table | View}
[[referencing {old [as] old
 | new [as] new} …]
for each { row |statement} [when (condition)]] PL/SQL block;

 27

Statement-Level Triggers

Statement-level triggers execute once for each transaction, either before or after the SQL
triggering statement executes.

For example, you could use a statement-level trigger to record an audit trail showing each time
the ENROLLMENT table is changed, regardless of how many rows are affected.

Before and After Triggers

Since the events that execute triggers are database transactions, triggers can be executed
immediately before or after inserts, updates, and deletes.

INSTEAD OF Triggers

You can use INSTEAD OF triggers to tell ORACLE what to do instead of performing the
actions that executed the trigger.

For example, you could use an INSTEAD OF trigger to redirect table inserts into a different
table or to update multiple tables that are part of a view.

Valid Trigger Types
14 possible configurations:

BEFORE INSERT row
BEFORE INSERT statement
AFTER INSERT row
AFTER INSERT statement
BEFORE UPDATE row
BEFORE UPDATE statement
AFTER UPDATE row
AFTER UPDATE statement
BEFORE DELETE row
BEFORE DELETE statement
AFTER DELETE row
AFTER DELETE statement
INSTEAD OF row
INSTEAD OF statement

 28

Trigger Syntax

Create [or replace] trigger [user.] trigger
 {before | after | instead of }
 {delete
 | insert
 | update [of column [, column [, column] …] }
 [or {delete
 | insert
 | update [of column [, column] …} }] …
 on [user.] {TABLE | VIEW}
 [[referencing {old [as] old
 | new [as] new} …]
for each {row | statement} [when (condition)]] PL/SQL BLOCK;

Create trigger ledger_bef_upd_row
before update on LEDGER
for each row
when (new.Amount/old.Amount > 1.1)
BEGIN
 insert into LEDGER_AUDIT
 values(:old.Actiondate, :old.Action, :old.Item, :old.quantity, :old.QuantutyType,
 :old.Rate, :old.Amount, :old.Person);
END;

Combining Trigger Types

Create trigger ledger_bef_upd_ins_row
before insert or update of Amount on LEDGER
for each row
BEGIN
 if INSERTING then
 insert into LEDGER_AUDIT
 values(:new.Action_Date, :new.Action, :new.Item, :new.Quantity,
 :new.QuantityType, :new.Rate, :new.Amount, :new.Person);
 else – if not inserting, then we are updating Amount
 insert into LEDGER_AUDIT
 values(:old.Action_date, :old.Action, :old.Item, :old.Amount, :old.Person);
 end if;
END;

 29

Setting Inserted Values

You may use triggers to set column values during inserts and updates.

For example, you may have partially denormalized your LEDGER table to include derived data,
such as UPPER(Person).

create trigger ledger_bef_upd_ins_row
before insert or update of Person on LEDGER
for each row
BEGIN
 :new.UperPerson := UPPER(:new.Person);
END;

Customizing Error Conditions

Within a single trigger, you may establish different error conditions. For each of the error
conditions you define, you may select an error message that appears when the error occurs.

The error numbers and messages that are displayed to the user are set via the
RAISE_APPLICATION_ERROR procedure.

The following example shows a statement-level BEFORE DELETE trigger on the LEDGER
table.

When a user attempts to delete a record from the LEDGER table, this trigger is executed and
checks two system conditions:

1. The day of the week is neither Saturday nor Sunday, and that the
2. ORACLE username of the account performing the delete begins with the letters ‘FIN’.

 30

create trigger ledger_bef_del
before delete on LEDGER
declare
 weekend_error EXCEPTION;
 not_finance_user EXCEPTION;
BEGIN
 if TO_CHAR(SYSDATE, ‘DY’) = ‘SAT’ or
 TO_CHAR(SYSDATE, ‘DY’) = ‘SUN’ THEN
 RAISE weekend_error;
 end if;
 IF SUBSTR(USER, 1,3) <> ‘FIN’ THEN
 RAISE not_finance_user;
EXCEPTION
 WHEN weekend_error THEN
 RAISE_APPLICATION_ERROR(-20001, ‘Deletions not allowed on
 weekends’);
 WHEN not_finance_error THEN
 RAISE_APPLICATION_ERROR(-20001, ‘Deletions only aloowed by
 Finance Users’);
END;

There are no when clauses in this trigger, so the trigger body is executed for all deletes.

Enabling and Disabling Triggers

To enable a trigger, use the alter trigger command with the enable keyword.

In order to use this command, you must either own the table or have ALTER ANY TRIGGER
system privilege.

 alter trigger ledger_bef_upd_row enable;

A second method of enabling triggers uses the alter table command, with the enable all triggers
clause.

 alter table LEDGER enable all triggers;

To use the alter table command, you must either own the table or have ALTER ANY TABLE
system privilege.

 31

You can disable triggers using the same basic commands with modifications to their clauses.

 alter trigger ledger_bef_upd_row disable;

For the alter table command, use the disable all triggers clause as shown:

 alter table LEDGER disable all triggers;

Dropping Triggers

In order to drop a trigger, you must either own the trigger or have the DROP ANY TRIGGER
system privilege.

 drop trigger ledger_bef-upd_row;

To create the ORDER_LINE table trigger:

1. Click + beside ORDER_LINE under your list of database tables, then click Triggers. Click

the Create button to create a new trigger for the ORDER_LINE table. The Database Triggers
dialog box opens.

2. Click New on the bottom-left of the dialog box. Delete the default trigger name, and type

Order_line_Trigger for the trigger name.

3. Make sure that the Before option button is selected, and check UPDATE, INSERT, and

DELETE to specify the trigger statements.

4. Click ORDER_QUANTITY in the Of Columns: list box to specify the update field that will

fire the trigger. Select the Row option button to specify that this is a row-level trigger. Type
OLD in the Referencing OLD As: text box, and type New in the NEW in the New As: text
box.

 32

To create the trigger body:

1. Type the trigger body code shown in Fig. 4.94. Click Save to create the trigger, then click

Close to close the Database Trigger dialog window. Now you will test the trigger. First, you
will test to confirm that the INSERT part of the trigger works correctly.

 BEGIN

IF INSERTING THEN
 update inventory
 set qoh = qoh - :NEW.order_quantity;
END IF;
IF UPDATING THEN
 UPDATE inventory set qoh = qoh + :OLD.order_quantity - :NEW.order_quantity;
END IF;
IF DELETING THEN
 UPDATE inventory set qoh = qoh + :OLD.order_quantity;
END IF;

 END;

2. Open the PL/SQL Interpreter window, and type the SELECT command shown in Fig. 4.94 at
the PL/SQL> prompt to determine the current QOH of inventory item 11848. The current
QOH should be 12.

SELECT qoh
 from inventory
where inv_id = 11848;

3. Type the INSERT command shown in Fig. 4.95 to insert a new record into ORDER_LINE.

INSERT INTO order_line
 VALUES(1062, 11848, 1);

4. Type the SELECT command again, as shown, to confirm that the QOH of INV_ID 11848
was decreased by one from 12 to 11 as a result of adding the record to ORDER_LINE. Now
you will test to make sure the UPDATE and DELETE trigger statements work correctly.

select qoh
 from inventory
where inv_id = 11848;

 33

5. Type the UPDATE command shown in Fig. 4.96 to update the quantity ordered from one
item to two items. Type the SELECT command to confirm that the QOH was decreased by
one to reflect the change.

update order_line
 set order_quantity = 2
where order_id = 1062
 and inv_id = 11848;

select qoh
 from inventory
where inv_id = 11848;

6. Type the DELETE command shown in Fig. 4.96 to delete the order from the database.

delete from order_line
 where order_id = 1062
 and inv_id = 11848;

7. Type the second SELECT command to confirm that the QOH was increased by two (from 10

to 12) to reflect the change caused by deleting the order.

select qoh
 from inventory
where inv_id = 11848;

Viewing Information About Triggers

SELECT trigger_name, trigger_type, triggering_event
FROM user_triggers;

TRIGGER_NAME TRIGGER_TYPE TRIGGERING_EVENT
------------------------- ------------------------- ------------------------------
enrollment_audit after statement insert or update or delete
enrollment_row_audit before each row update

Built-In Packages

The packages fall into five categories:

1. transaction processing
2. application development
3. database administration
4. application administration
5. internal support

 34

Transaction Processing Packages

Procedures related to locking and releasing database objects to support transaction processing,
supporting the COMMIT and ROLLBACK commands, and providing a way to specify query
properties in PL/SQL programs at runtime.

Package Name Description
DBMS_ALERT Dynamically sends messages to other database sessions
DBMS_LOCK Creates user-defined locks on tables and records
DBMS_SQL Implements Dynamic SQL
DBMS_TRANSACTION Provides procedures for transaction management, such as creating

read-only transactions, generating a rollback, and creating a
savepoint

Application Development Packages

Aid developers in creating and debugging PL/SQL applications.

Package Name Description
DBMS_DESCRIBE Returns information about the parameters of

any stored program unit
DBMS_JOB Schedules PL/SQL programs to run at specific

times
DBMS_OUTPUT Provides text output in PL/SQL programs
DBMS_PIPE Sends messages to other database sessions

asynchronously
DBMS_SESSION Dynamically changes properties of a database

session
UTL_FILE Enables PL/SQL output to be written to a

binary file

Using the DBMS_JOB Package

PL/SQL procedure that creates and prints a report containing information about incoming
shipments at Clearwater Traders on the first day of every month.

The package creates a job queue,
• which is a list of program units to be run and the details for when and how often they are to

be run.

The packages SUBMIT procedure is used to submit a job to the job queue, using the following
syntax:

 35

DBMS_JOB.SUBMIT(job_number, call_to_stored_program_unit, next_run_date,
interval_to_run_job_again, no_parse_value);

This command has the following parameters:

• job_number is a unique number that is automatically assigned to the job by the procedure.
• Call_to_stored_program_unit is a string representing the code used to call the program

unit, including parameter values.
• Next_run_date is a date that specifies the next date and time when the job is scheduled to

run.
• Interval_to_run_job_again is a text string that specifies a time interval when the job will

be run again. For example, if the job is to run for the first time on the current system date
and the next time one day aft the current system date, the interval parameter would be
specified as ‘SYSDATE+1’.

• No_parse_value is a Boolean parameter that specifies whether or not the program unit is
to be parsed and validated the next time it executes.

The DBMS_JOB package’s RUN procedure can be used to run a previously submitted job
immediately.

This procedure has the syntax:

DBMS_JOB.RUN(job_number);

The job_number parameter corresponds to the job number that is assigned to the job when it is
submitted to the job queue using the SUBMIT procedure.

The DBMS_JOB package’s REMOVE procedure can be used to remove a job from the job
queue. The REMOVE procedure has the syntax

DBMS_JOB.REMOVE(job_number);

Using the DBMS_PIPE Package

A pipe is a program that directs information from one destination (such as screen display) to a
different destination (such as a file or database).

The DBMS_PIPE package implements database pipes, which are pipes that are implemented
entirely in Oracle database and are independent of the operating system, of the database server,
or client workstation.

A specific pipe has a single writer, which is the session that creates the message, and multiple
readers, which are sessions that receive the message.

 36

Pipes are asynchronous, which means that they operate independently of transactions.

To send a message using a pipe, use the PACK_MESSAGE and SEND_MESSAGE procedures.

PACK_MESSAGE procedure places the outgoing message in a buffer using the syntax:

DBMS_PIPE.PACK_MESSAGE(message);

The message can be of any data type, and multiple items of different data types can be sent in a
single message.

The SEND_MESSAGE function sends the contents of the pipe using the following syntax:

Return_value := DBMS_PIPE.SEND_MESSAGE(‘pipe_name’, timeout_interval,
maximum_pipe_size);

• return_value, which is an integer variable that is assigned the following values
depending on the pipe status after the function is called:

Value Meaning

0 Pipe message successfully sent
 1 The call timed out, possibly because the pipe was too full to be sent or a lock

 could not be obtained

 3 The call was interrupted due to an internal error

• pipe_name, which identifies the pipe and can be any name that conforms to the Oracle

naming standard

• timeout_interval, which is an optional parameter that specifies the time interval, in
seconds, that the procedure should try to send the pipe before quitting and returning an
error message. Because the default value is 1000 days, it is a good idea to specify a
smaller value when developing new pipes. Otherwise, the system will hang, and
SQL*PLUS will have to be shut down and restart it if there is a mistake in the code.

 37

• Maximum_pipe_size, specifies the amount of buffer space, in bytes, that is allocated to
the pipe, with a default value of 8,192 bytes. Most messages need a larger value, because
some of the pipe buffer space is occupied with values specifying the pipe properties. If the
pipe buffer size is too small, the pipe will not be successfully received and the receiver’s
SQL*PLUS session will lock up and have to be restarted. Once a pipe is sent, it remains in
the pipe buffer until the database is shut down and then restarted.

DECLARE
 -- Pipe message contents
 out_message_text VARCHAR(30);
 sending_username VARCHAR2(30);
 sending_date DATE;
 -- return value for sending pipe
 pipe_status BINARY_INTEGER;
BEGIN
 -- Retrieve current date and username
 SELECT user, sysdate
 INTO sending_username, sending_date
 FROM dual;

 -- Initialize text message
 output_message_text := ‘Test Message’;
 -- pack the message items
 DBMS_PIPE.PACK_MESSAGE(output_message_text);
 DBMS_PIPE.PACK_MESSAGE(sending_username);
 DBMS_PIPE.PACK_MESSAGE(sending_date);
 -- Send the pipe
 pipe_status := DBMS_PIPE.SEND_MESSAGE(‘test_pipe’, 0, 30000);

DBMS_OUTPUT.PUT_LINE(‘Outgoing pipe status: ‘ || pipe_status);
END;
/
Outgoing pipe status: 0

System Privileges

To use the DBMS_PIPE package, you must have the EXECUTE_ANY_PROCEDURE system
privilege.

Receiving a pipe

Return_value := DBMS_PIPE.RECEIVE_MESSAGE(‘pipe_name’, timeout_interval);

Return_value is an integer variable assigned the following values based on the outcome of
receiving message:

 38

Value Meaning

0 Pipe message successfully received
 1 No message received and the function timed out

 2 The message in the pipe was too large for the buffer

 3 an internal error occurred

pipe_name – name of the pipe specified in the SEND_MESSAGE function

timeout_interval – optional parameter that specifies the time interval, in seconds, that the
procedure should continue to try to receive the pipe.

Default value: 1000 days

Use shorter value when developing new programs to receive pipes, or else the program will
appear to lock up in SQL*PLUS if there is an error in the code

Unpacking message

DBMS_PIPE.UNPACK_MESSAGE(output_variable_name);

output_variable_name – name of variable that is used to reference each item in the pipe.

The receiver must unpack the pipe message for each item that was sent. The message items must
be unpacked in the same order they were packed, using output variables of the correct data type.

 39

To receive the pipe:

SET SERVER OUTPUT ON SIZE 4000

DECLARE
 -- Return value for receiving pipe
 pipe_status BINARY_INTEGER;
 -- variables to unpack message items
 incoming_message_text VARCHAR2(30);
 incoming_username VARCHAR2(30);
 incoming_date DATE;
BEGIN
 Pipe_status := DBMS_PIPE.RECEIVE_MESSAGE(‘test_pipe’, 0);
 DBMS_OUTPUT.PUT_LINE(‘Incoming pipe status: ‘ || pipe_status);
 DBMS_PIPE.UNPACK_MESSAGE(incoming_message_text);

DBMS_OUTPUT.PUT_LINE(‘Message: ‘ || incoming_message_text);
 DBMS_PIPE.UNPACK_MESSAGE(incoming_username);

DBMS_OUTPUT.PUT_LINE(‘Sender: ‘ || incoming_username);
 DBMS_PIPE.UNPACK_MESSAGE(incoming_date);

DBMS_OUTPUT.PUT_LINE(‘Date sent: ‘ || incoming_date);
END;
/
Incoming pipe status: 0
Message: Test Message
Sender: LHOWARD
Date sent: 19-DEC-00

Database and Application Administration Packages

Supports database administration tasks, such as

• Managing memory on the database server
• Managing how disk space is allocated and used
• Recompiling and managing stored program units and packages

Package Name Description
DBMS_APPLICATION_INFO registers information about programs being run by individual

user sessions
DBMS_DDL Provides procedures for compiling program units and

analyzing database objects
DBMS_SHARED_POOL Used to manage the shared pool, which is a server memory

area that contains values that can be accessed by all users
DBMS_SPACE Provides information for managing how data values are

physically stored on the database server disks
DBMS_UTILITY Provides procedures for compiling all program units and

analyzing all objects in a specific database schema

 40

The DBMS-DDL Package

ALTER_COMPILE procedure – used to recompile a program unit that is invalidated due to
changes in tables or procedures on which it has dependencies.

The procedure makes it easy to quickly recompile several program units

Calling the procedure:

DBMS_DDL.ALTER_COMPILE(program_unit_type, owner_name, program_unit_name);

• Program_unit_type, which specifies the type of program unit, such as ‘PROCEDURE’,
‘FUNCTION’, ‘PACKAGE’, ‘PACKAGE BODY’. The value must be enclosed in single
quotation marks and must be in all capital letters.

• Owner_name, which specifies the username of the user who owns the program unit. The
username is enclosed in single quotation marks and must be in all capital letters.

• Program_unit_name, which specifies the name of the program unit, enclosed in single
quotation marks and in all capital letters.

To recompile the program units:

BEGIN

DBMS_DDL.ALTER_COMPILE(‘PROCEDURE’, ‘LHOWARD’,
 ‘CREATE_NEW_ORDER’);

DBMS_DDL.ALTER_COMPILE(‘FUNCTION’, ‘LHOWARD’,
 ‘AGE’);

DBMS_DDL.ALTER_COMPILE(‘PACKAGE’, ‘LHOWARD’,
 ‘ENROLLMENT_PACKAGE’);
END;
/

PL/SQL procedure successfully completed

Oracle Internal Support Packages

Provides underlying functionality of the Oracle database.

This code is placed in packages to enable users to view the package specifications, which are
useful for understanding how to use the items, while preventing users from modifying the
underlying package body code.

 41

Package Name Description
STANDARD Defines all built-in functions and procedures,

database data types, and PL/SQL data type
extensions

DBMS_SNAPSHOT Used to manage snapshots, which capture the
database state at a specific point in time

DBMS_REFRESH Used to create groups of snapshots, which can
be refreshed simultaneously

DBMS_STANDARD Contains common processing functions of the
PL/SQL language

To call many procedures in commonly used packages like STANDARD and
DBMS_STANDARD, you do not need to preface the procedure name with the package name.

For example, the COMMIT command is actually a procedure in the DBMS_STANDARD
package.

DYNAMIC SQL

Static SQL commands in PL/SQL programs: structure of the commands have been established
and the database objects are validated when the program containing the SQL command is
compiled.

Dynamic SQL commands in PL/SQL programs: commands are created as text strings and then
compiled and validated at runtime.

Advantage: can dynamically structure SQL queries based on user inputs, and you can include
DDL commands like CREATE, ALTER, and DROP in PL/SQL programs.

• Useful when you want to create programs that contain SQL queries that are based on
dynamic conditions, such as the current system date or time.

• Allows to create programs that create or alter the structure of database tables. For
example, a program may create a temporary database table, use the table to generate a
report, and then drop the table.

All Dynamic SQL processing is performed using a cursor that defines the server memory area
where the processing takes place.

DBMS_SQL package – contains program units for creating and manipulating the cursor.

 42

Program Unit Name Description Type Input variables
OPEN_CURSOR Opens the cursor

that defines the
processing area

Function,
returns
cursor_ID

None

PARSE Sends statement
to the server,
where syntax is
verified

Procedure Cursor_ID, SQL_statements,
language_flag, which is set to
DBMS_SQL.V7’

BIND_VARIABLE Associates
program
variables with
input or output
values

Procedure Cursor_ID, variable_name,
variable_value,
maximum_character_column_size

DEFINE_COLUMN Specifies the
type and length
of output
variables

Procedure Cursor_ID, column_position,
column_name,
maximum_character_column_size

EXECUTE Executes the
Dynamic SQL
statement

Function,
returns the
number of rows
fetched

Cursor_ID

FETCH_ROWS Fetches rows for
a SELECT
operation

Function,
returns the
number of rows
fetched

Cursor_ID

VARIABLE_VALUE Retrieves values
of output
variables

Procedure Cursor_ID, variable_name,
variable_value

COLUMN_VALUE Associates
fetched values
with program
variables

Procedure Cursor_ID, column_position,
output_variable

CLOSE_CURSOR Closes the cursor
when processing
is complete

Procedure Cursor_ID

 43

Dynamic SQL Programs That Contain DML Commands

Processing dynamic SQL programs that involve DML commands involves the following steps:

1. Open the cursor using the OPEN_CURSOR function.

cursor_ID := DBMS_SQL.OPEN_CURSOR;

The cursor_id is a variable that has been declared using the NUMBER data type.

2. Define the SQL command as a text string, using placeholders for dynamic values.

SQL_command_string_variable := ‘SQL_command_text’;

A placeholder is a variable that is prefaced with a colon and is not formally declared in the
procedure

SELECT :field_placeholder_name FROM :table_placeholder_name;

3. Parse the SQL command using the PARSE procedure.

DBMS_SQL.PARSE(cursor_ID, SQL_command_string_variable, language_flag);.

Thee language_flag parameter specifies the version of the DBMS_SQL package being used.
Possible values are DBMS_SQL.V6, which is used with Oracle Version 6 databases, and
DBMS_SQL.V7 which is used with Oracle Version 7 and higher databases.

4. Bind input variables to placeholders using the BIND_VARIABLE procedure.

DBMS_SQL.BIND_VARIABLE(cursor_ID, ‘:placeholder’, placeholder_value,
maximum_character_column_size);.

For example, to bind the value STUDENT’ to the placeholder :table_pholder, you would use

DBMS_SQL.BIND_VARIABLE(cursor_ID, ‘:table_pholder’,’STUDENT’,30);.

5. Execute the SQL command using the EXECUTE function.

number_of_rows_processed := DBMS_SQL.EXECUTE(cursor_ID);.

The number_of_rows_processed return value is a variable that is declared using the
NUMBER or INTEGER data type.

 44

6. Close the cursor using the CLOSE_CURSOR procedure.
DBMAS_SQL.CLOSE_CURSOR(cursor_ID);

To create and execute the Dynamic SQL procedure that uses a DML command

CREATE OR REPLACE PROCEDURE update_prices(pct_change IN NUMBER,
 curr_item_id IN NUMBER)
AS
 Cursor_id NUMBER;
 Update_stmt VARCHAR2(1000);
 Rows_updated NUMBER;
BEGIN
 --open the cursor
 cursor_id := DBMS_SQL.OPEN_CURSOR;

 --specify the SQL string using placeholders
 update_stmt := ‘UPDATE inventory
 SET price = price * (1 + :pct_ch)
 WHERE item_id = :c_item_id’;

 --parse the statement
 DBMS_SQL.PARSE(cursor_id, update_stmt, DBMS_SQL.V7);

--bind the placeholders to the input parameter variables
 DBMS_SQL.BIND_VARIABLE(cursor_id, ‘:pct_ch’, pct_change);
 DBMS_SQL.BIND_VARIABLE(cursor_id, ‘:c_item_id’, curr_item_id);

 --execute the statement
 rows_updated := DBMS_SQL.EXECUTE(cursor_id);
 --close the cursor
 DBMS_SQL.CLOSE_CURSOR(cursor_id);
END;
/

Procedure created.

EXECUTE UPDATE_PRICES(.1, 786);.

SELECT price FROM inventory WHERE item_id = 786;.

 45

Processing Dynamic SQL Programs that contain DDL Commands

Dynamic SQL programs allow CREATE, ALTER, or DROP tables within PL/SQL programs.

You cannot use placeholders in a DDL command, so you cannot dynamically bind parameter
values at runtime.

In addition, DDL statements are executed in the PARSE procedure, so the call to the EXECUTE
procedure is not needed.

The steps for processing a Dynamic SQL program that uses DDL commands are:

1. Open the cursor
2. Define the SQL command as a text string
3. Parse the SQL command
4. Close the cursor

To create a Dynamic SQL procedure that creates a table:

CREATE OR REPLACE PROCEDURE create_temp_table(table_name VARCHAR2)
AS
 Cursor_id NUMBER;
 Ddl_stmt VARCHAR2(500);
BEGIN
 --open the cursor
 cursor_id := DBMS_SQL.OPEN_CURSOR;
 --specify the SQL string to create the table
 ddl_stmt := ‘CREATE TABLE ‘ || table_name || ‘(table_id NUMBER(6))’;
 --parse and execute the statement
 DBMS_SQL.PARSE(cursor_id, ddl_stmt, DBMS_SQL.V7);
 --close the cursor
 DBMS_SQL.CLOSE_CURSOR(cursor_id);
END;
/

Procedure created.

EXECUTE privilege required on the DBMS_SYS_SQL package in the SYS database
schema.

USERNAME: INTERNAL
PASSWORD: ORACLE,

GRANT execute on DBMS_SYS_SQL to PUBLIC;

 46

EXECUTE CREATE_TEMP_TABLE(‘my_table’);

If you are using Personal Oracle and you receive an error stating you have insufficient privileges
to create the table, log onto SQL*Plus as username INTERNAL, password ORACLE, and use
this account for all Dynamic SQL procedures that require creating a new table.

DESCRIBE my_table;.

Processing Dynamic SQL Programs that contain SELECT Commands

The steps for creating a Dynamic SQL procedure that contains a SELECT command are:

1. Open the cursor
2. Define the SQL command as a text string
3. Parse the SQL command
4. Bind input variables to placeholders
5. Define output variables using the DEFINE_COLUMN procedure. This procedure

specifies the variables within the procedure that will be used to reference the retrieved
columns. The procedure syntax is

DBMS_SQL.DEFINE_COLUMN(cursor_id, column_position, variable_name,
maximum_character_column_size);

6. Execute the query.
7. Fetch the rows using the FETCH_RECORD function. This function fetches each

record into a buffer that temporarily stores the values and has the syntax

Number_of_rows_left_to_fetch := DBMS_SQL.FETCH_RECORD(cursor_id);

The FETCH_RECORD function must be processed using a loop, because the query
might retrieve multiple records.

If the FETCH_RECORD function returns the value 0, then the SELECT query has no
more rows to return. Therefore, the comparison

IF DBMS_SQL.FETCH_RECORD(cursor_id) = 0

is used to test for the loop exit condition.

 47

8. Associate the fetched rows with the output columns using the COLUMN_VALUE
procedure.

DBMS_SQL.COLUMN_VALUE(cursor_id, column_position, variable_name);

9. Close the cursor.

To create a Dynamic SQL procedure that contains a SELECT command:

CREATE OR REPLACE PROCEDURE retrieve_consultant_details(curr_c_id IN
NUMBER)
AS
 Cursor_id NUMBER;
 Select_stmt VARCHAR2(500);
 Cursor_return_value INTEGER;
 Curr_proj_name VARCHAR2(30);
 Curr_hours NUMBER(6);
BEGIN
 --open the cursor
 cursor_id := DBMS_SQL.OPEN_CURSOR;
 --specify the SQL SELECT command
 select_stmt := ‘SELECT project_name, total_hours FROM project, project_consultant
 WHERE project.p_id = project_consultant.p_id AND c_id = :in_c_id’;
 --parse the statement
 DBMS_SQL.PARSE(cursor_id, select_stmt, DBMS_SQL.V7);
 --bind the placeholder to the input parameter variable
 DBMS_SQL.BIND_VARIABLE(cursor_id, ‘:in_c_id’, curr_c_id);
 --define the output columns
 DBMS_SQL.DEFINE_COLUMN(cursor_id, 1, curr_proj_name, 30);
 DBMS_SQL.DEFINE_COLUMN(cursor_id, 2, curr_hours);
 --execute the statement
 cursor_return_value := DBMS_SQL.EXECUTE(cursor_id);
 --fetch rows and associate fetched values with output columns
 LOOP
 IF DBMS_SQL.FETCH_ROWS(cursor_id) = 0 THEN
 EXIT;
 END IF;
 DBMS_SQL.COLUMN_VALUE(cursor_id, 1, curr_proj_name);
 DBMS_SQL.COLUMN_VALUE(cursor_id, 2, curr_hours);
 DBMS_SQL.PUT_LINE(curr_proj_name || ‘ ‘ || curr_hours);
END LOOP;
DBMS_SQL.CLOSE_CURSOR(cursor_id);

END;
/

 48

Procedure created.

EXECUTE retrieve_consultant_details(102);

Teller Support System 30
Exploration Database 125

PL/SQL procedure successfully completed.

Using Dynamic SQL to Create an Anonymous PL/SQL Block

This provides a way to use Dynamic SQL in PL/SQL programs when you do not want to create a
named program unit or when you do not have the necessary privileges to create a named program
units.

This also provides an easier way to process SELECT commands in Dynamic SQL programs
when only one record is retrieved.

1. Open the cursor using the OPEN_CURSOR function.
2. Define the PL/SQL block, including the declarations, body, and exception section, is

assigned to a text string variable.

Output variables are defined in the INTO clause of an implicit cursor in the SQL query using
placeholders.

SELECT s_first, s_last INTO :sf_place, :sl_place
FROM student
WHERE s_id = :s_id_place;

3. Parse the SQL command using the PARSE procedure.
4. Bind input and output variables to placeholders using the BIND_VARIABLE procedure.
5. Execute the SQL command using the EXECUTE function.
6. Retrieve the values of the output variables using the VARIABLE_VALUE procedure.

DBMS_SQL.VARIABLE_VALUE(cursor_id, ‘placeholder_name’,
output_variable_name);.

The output_variable_name parameter is a declared variable that has the same data type as the
associated output placeholder variable.

7. Close the cursor using the CLOSE_CURSOR procedure.

 49

 50

To create a Dynamic SQL procedure that processes an anonymous PL/SQL block:

CREATE OR REPLACE PROCEDURE retrieve_consultant_hours(curr_c_id IN NUMBER)
AS
 Cursor_id NUMBER;
 Block_stmt VARCHAR2(1000);
 Rows_processed INTEGER;
 Curr_cons_first VARCHAR2(30);
 Curr_cons_last VARCHAR2(30);
 Total_cons_hours NUMBER(6);
BEGIN
 Cursor_id := DBMS_SQL.OPEN_CURSOR;
 /* specify the PL/SQL block */
 block_stmt := ‘BEGIN
 SELECT c_first, c_last, SUM(total_hours)
 INTO :cons_first, :cons.last, :cons_hours
 FROM consultant, project, project_consultant
 WHERE consultant.c_id = project_consultant.c_id
 AND project.p_id = project_consultant.p_id
 AND consultant.c_id = :in_c_id
 GROUP BY c_first, c_last;
 END;’;
 DBMS_SQL.PARSE(cursor_id, block_stmt, DBMS_SQL.V7);
 /* bind the placeholders to the procedure variables */
 DBMS_SQL.BIND_VARIABLE(cursor_id, ‘:in_c_id’, curr_c_id);
 DBMS_SQL.BIND_VARIABLE(cursor_id, ‘:cons_first’, curr_cons_first, 30);
 DBMS_SQL.BIND_VARIABLE(cursor_id, ‘:cons_last’, curr_cons_last, 30);
 DBMS_SQL.BIND_VARIABLE(cursor_id, ‘:cons_hours’, total_cons_hours);
 Rows_processed := DBMS_SQL.EXECUTE(cursor_id);

/* retrieve the output variable values */
DBMS_SQL.VARIABLE_VALUE(cursor_id, ‘:cons_first’, curr_cons_first);
DBMS_SQL.VARIABLE_VALUE(cursor_id, ‘:cons_last’, curr_cons_last, 30);
DBMS_SQL.VARIABLE_VALUE(cursor_id, ‘:cons_hours’, total_cons_hours);
/* output the consultant hours */
DBMS_OUTPUT.PUT_LINE(‘Total hours for ‘ || curr_cons_first || ‘ ‘ || curr_cons_last ||
 ‘: ‘ || total_cons_hours);
DBMS_SQL.CLOSE_CURSOR(cursor_id);

END;
/

EXECUTE retrieve_consultant_hours(102);

Total hours for Brian Zhang: 155

	Named Program Units
	Description
	Where Stored
	Where Executed
	Procedures and Functions
	Mode
	Description
	Required System Privileges
	
	Calling Program Units and Passing Parameters

	Procedures Vs. Functions
	Procedures Vs. Packages
	
	Creating Stored Procedures in SQL*Plus

	Create Procedure Syntax
	
	Debugging Named Program Units in SQL*PLUS
	Figure 5-4. Named program unit with compile error
	Creating Functions in SQL*PLUS
	Syntax for the body of a function
	Figure 5-7. Creating a user-defined function
	Anonymous program block calling function AGE
	Figure 5-8. Calling the user-defined function
	Function Purity Levels
	Purity Level
	Abbreviation
	Description
	Stored Program Unit Object Privileges
	Figure 5-10. Executing a function owned by another user

	Creating a Client-side Procedure in Procedure Builder
	Calling a Procedure and Passing Parameters
	Calling Procedure
	
	Creating procedure CREATE_NEW_ORDER_LINE
	Creating procedure CREATE_NEW_ORDER

	Functions
	
	Calling a Function
	Program Unit Dependencies
	Data Dictionary views

	The Package Specification
	PACKAGE Inventory_Package IS
	-- variable declaration
	Global_Inv_IDNUMBER(6);
	-- Program unit declarations
	Procedure Update_Inv_Value;
	Procedure Update_Inv_Value_Record;
	Procedure Update_QOH(Current_Inv_ID NUMBER, New_QOH NUMBER);
	END;
	The Package Body
	
	PACKAGE BODY Inventory Package IS -- start of package body
	Referencing Package Items
	Overloading Program Units in Packages

	Database Triggers
	
	Difference between triggers and other program units

	Required System Privileges
	Required Table Privileges
	Types of Triggers
	Row-Level Triggers
	Statement-Level Triggers
	Before and After Triggers
	
	INSTEAD OF Triggers

	Valid Trigger Types
	Trigger Syntax
	Combining Trigger Types
	Setting Inserted Values
	Customizing Error Conditions
	Enabling and Disabling Triggers
	Dropping Triggers
	Built-In Packages
	Transaction Processing Packages
	Package Name
	Description
	Application Development Packages
	Package Name
	Description
	Using the DBMS_JOB Package
	Using the DBMS_PIPE Package
	Receiving a pipe
	Unpacking message
	Database and Application Administration Packages
	Package Name
	Description
	The DBMS-DDL Package
	Oracle Internal Support Packages
	DYNAMIC SQL
	Dynamic SQL Programs That Contain DML Commands

