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i Netscape browser versions

= Netscape 2 (JavaScript 1.0, obsolete)
= Netscape 3 (JavaScript 1.1)

= Netscape 4 (JavaScript 1.2, broken)
= Netscape 4.5 (JavaScript 1.3)

= Netscape 6 / Mozilla (JavaScript 1.5)
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i Microsoft browser versions

= IE 3 (JScript 1.0/ 2.0)
= IE 4 (JScript 3.0)

= IE 5 (JScript 5.0)

= IE 5.5 (JScript 5.5)

= IE 6 (JScript 5.5)
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i Standardized Versions

= The ECMA (European Computer
Manufacturers Association) has standardized
JavaScript (ECMA-262) called ECMAScript

= There are 4 versions so far (v1, v2, v3, v4)

= Search web for ECMAScript if you want more
information.

= http://www.ecma-
international.org/publications/standards/Ecm
a-262.htm
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i Language Versions (1)

= JavaScript 1.0
= original obsolete version

= JavaScript 1.1

= fixed bugs, introduced proper arrays,
implemented in Netscape 3

= JavaScript 1.2

= added regular expression, almost compliant with
ECMAScript v1, implemented in Netscape 4
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i Language Versions (2)

= JavaScript 1.3

=« compliant with ECMAScript v1, implemented in
Netscape 4.5

= JavaScript 1.4
= Server version

= JavaScript 1.5

= added exception handling, compliant with
ECMAScript v3, implemented in Netscape 6 and
Mozilla
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i Language Versions (3)

= JScript 1.0
= like JavaScript 1.0, implemented in IE 3

= JScript 2.0
= like JavaScript 1.1, implemented in IE 3

= JScript 3.0
=« like JavaScript 1.3, compliant with ECMAScript
vl, implemented in IE 4
= JSscript 4.0
= Standalone non-browser version
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i Language Versions (4)

= JScript 5.0

= added exception handling, almost compliant with
ECMAScript v3, implemented in IE 5

= JScript 5.5

= like JavaScript 1.5, compliant with ECMAScript
v3, implemented in IE 5.5 and IE 6

= ECMAScript vi, v2

= First standardized version, v2 (maintenance
release)

= ECMAScript v3 (regex and exceptions)
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i Main language references (1)

= Netscape has online client guide to
JavaScript:

http://devedge.netscape.com/
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i Main language references (2)

Netscape has online JavaScript client
reference at developer.netscape.com

http://devedge.netscape.com/
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i Main language references (3)

BGA

For information on Microsofts versions of
javascript called JScript search for JScript at

http://msdn.microsoft.com
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i Other references (1)

s W3schools has an excellent interactive
tutorial on JavaScript

http://www.w3schools.com
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i Reference book

= JavaScript: The Definitive Guide, 4th Edition
David Flanagan

O'Reilly, 2002

ISBN: 0-596-00048-0

s This is like four books in one

BGA

= Core JavaScript

= Client-Side JavaScript

= Core JavaScript Reference

= Client-Side JavaScript Reference
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i What is JavaScript

= High-level scripting (interpreted) language
= Untyped, prototype based OOP language
= Not a simple language

= Used to be called LiveScript and has no
connection with Java

= Borrows a lot of syntax from Java and C

= It can run in a browser (client-side) or as a
standalone scripting language (Microsoft's
JScript and WSH)
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i Where do we put JavaScript?

= Embedded in an HTML document between
script tags
<script language="javascript'">
JavaScript statements go here
</script>

= In an external file which is loaded using

<script src="program.ijs" ...></script>

JavaScript file

Nothing between tags
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i Where do we put <script>?

= In the head of the HTML document

= Here it is read before the HTML document in the
body is parsed. Any code, except function
definitions, will be executed immediately.

= In the body of the HTML document

= Here it is read while the HTML document is

being parsed. When the parser sees the
<script> tag it stops parsing the document

and interprets the JavaScript code.
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i Writing HTML with JavaScript

= Later we will discuss the document object
model (DOM) that lets JavaScript interact
with the elements of an HTML document.

s For now we will use document.write ()
to produce HTML output using JavaScript.

= Example:
document.write ("<hl>Hello World</h1l>") ;
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i Hello World program (1)

<html>

<head>

<title> ... </title>

<script language='"javascript'">
document.writeln ("<hl>Hello World</hl>");

</script>

</head> Anything here will display
<body> after the Hello World
</body>
</html>

examples/simple/HelloWorldl.html

BGA

18



i Hello World program (2)

<html>

<head>

<title> ... </title>

</head>

<body>

<script language='"javascript">
document.writeln ("<hl>Hello World</hl>");

</script>

</body>

</html>

examples/simple/HelloWorld2.html
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i Hello World program (3)

<html><head><title> ... </title>

<script language='"javascript">

function hello()

{ document.write("<hl>Hello World</hl>"); }
</script>

</head>

<body>

<script language='"javascript'">hello() ;</script>
</body>

</html>

examples/simple/HelloWorld3.html

BGA
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i Hello World program (4)

<html><head><title> ... </title>

<script language='"javascript" src="hello.]js">
</script>

</head>

<body>

<script language="javascript">hello() ;</script>
</body>
</html>

hello. js

examples/simple/HelloWorld4.html

function hello()

{
document.writeln("<hl>Hello World</hl>") ;

}

BGA
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i Hello World program (5)

<html><head><title> ... </title>
<script language="javascript'>
window.alert ("Hello World") ;
</script>
</head>
<body>
Close alert box to see this text.<br>

An alert box

Use reload to run the script again.
</body>
</html>

examples/simple/HelloWorld5.html

BGA
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i Hello World program (6)

<html><head><title> ... </title>
<script language="javascript'>
function hello()
{ document.write ("<hl>Hello World</hl>"); }
</script>

</head> (/?fyoudothSthe
<body onload="hello() "> | back button won't
This text will never be s;;;T\\\\\\\\\¥ work
</body> this is
</heml> Microserf
specific

examples/simple/HelloWorld6.html

BGA 23



i Insert date example

<html><head><title> ... </title>

</head>

<body>

<hl>Inserting the date into a document</hl>
The date 1is

<script language='"javascript'>

document.write (new Date()) ;

</script> right now.
</body>
</html>

create a Date object
and call its toString
method

examples/simple/insertDate.html

BGA
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i JavaScript Variables

= JavaScript is an untyped language so a
variable can hold any kind of value.

= The var keyword is used to define variables.

var 1 = 1; -
i = "a string"; No type is used

1 = new Date();

= If it is omitted the variable is implicitly
declared as a variable with global scope.

m JavaScript is case-sensitive
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i Variable types

= Just because JavaScript is untyped doesn't
mean that there are no data types:

= Number type

= NO distinction between integer and floating point
numbers (64 bits)

= String type and string literals
= literals enclosed in single or double quotes
= strings are like immutable objects

= Array type, Object type, many other types
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i Variable Scoping (1)

= Unlike Java, JavaScript is not block-scoped
= Example:

In Java, sum is

{ local to the block.
In JavaScript
var sum = 0.0; it is local to the
enclosing function
}
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i Variable scoping (2)

= A local variable (declared inside a function)
will hide a global variable with the same
name.

= Attempting to use a variable that has been

declared but not initialized gives the
undefined value. In this sense all declared

variables have a value.
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i Number Data Type

= Number is an object type that represents
integers and floating point numbers

= Floating point numbers are 64-bit IEEE
= There is no separate integer type

= A floating point value can store an integer
exactly in the range -2~ to 2~

= Floating point literals have a decimal point or
e, E to represent the exponent.

= +, -, *, / are floating point operations
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i Special Number values

m Infinity
m NaN
= Not a number
= Number .MAX VALUE
= largest positive number
s Number. MIN VALUE
= sSmallest non-zero positive number
s Number. POSITIVE INFINITY

= Number .NEGATIVE INFINITY

BGA
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i String Data Type (1)

= Strings are like immutable objects and are
very similar to strings in Java

= String literals can use single or double
quotes as delimiters. \ acts as an escape

so \n refers to the newline character.

= The following are the same
= var s = "hello";

= var s new String("hello");

there is no reason to
BGA ever do this 31




i String Data Type (2)

= There are many string methods and most
are the same as in Java

= s.length (thisis a property)
.substring (1)
.substring (i, j)
.charAt (1)

.indexOf (pattern)

|
n O n
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i Boolean data type

= Like Java, the literals true and false are
the values of a boolean variable in JavaScript

= Unlike Java, JavaScript can convert them to
1 and 0 to use in expressions as needed
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i Standard functions

= Functions are very different than in Java

= We can have standard function definitions
like

function square (x)

{

return x * x;

}
= No types are specified.
s Function like this are similar to Java methods
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i Function literals (1)

= They have no correspondence in Java

= Function literals are unnamed functions like
the lambda functions in Lisp that can be
assigned as the value of a variable.

= Example

var square =
function(x) {return x*x;}

= Used the same way as a standard function:
var s = square(2.0);
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i Function Literals (2)

= Function literals can be used as arguments
to other functions:
var comp = function compare (x,YVy)

{ return x - y; }

= Now if we have a sort function that needs

a comparison function we can call it like
d.sort (comp)
where a is the array to sort
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i The Function constructor

= Functions can be constructed at run-time
using a function constructor:
var square = Function

"x", "return x*x;");

= Here the first argument is the function
argument list and the second argument is
the function body.

= There is no correspondence in Java
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i Object Types (1)

= An uninitialized object
var obj = new Object();

= A Date object for today

var today = new Date();

= A Date object for Jan 1, 2002, 0 hours

var newYear =
new Date (2002,0,1,0,0,0,0);

BGA
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i Object Types (2)

= Data fields of a Java object are properties in
JavaScript. They are always public and are
accessed directly using the dot notation:
document.myForm.myName

= Here document is a predefined object
referring to the HTML document, myForm is
the name of a form and myName is the name

of the specified input object. For example

type="text" name="myName" ...
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i Object Types (3)

= If @ Rectangle object rect has width and

height properties they can be accessed as

rect.width (same as rect['width'])
rect.height (Ssame as rect['height'])

= Methods are also invoked using dot notation

= Instance method example
document.write("...");

= Static method example
var s2 = Math.sqgrt(2.0) ;
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i Object Types (4)

= Simple custom objects (no methods)
var point = new Object();

point.x = 3.2;

point.y = -1.7;
= point is an object with properties x and y
= Object literals can also be used to directly

construct objects
var point = { x:3.2, y:-1.7 };
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i Array Types (1)

= Unlike Java, arrays are dynamic in Java

= Example: Declare an array with no elements
and then add some elements
var a = new Array()

af[0]=1; a[l]l=2; a[2]=3; a[9]=10;
s There are 10 elements but 6 are undefined
= Length of array is a. length

examples/simple/arrayl.html
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i Array Types (2)

= Arrays can be inhomogeneous:

var b = new Array (123, "Fred",
345.50, new Array(1,2,3));

= Array literals can be used
var b = [123, "Fred", 345.50];

var m = [ [1,2,3], [4,5,6], [7,8,9]];
= There are many array methods (later)

examples/simple/array2.html
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i Array Types (3)

= Arrays can be associative:

var age = new Array();

age['fred'] = 34; age['jim'] = 13;
age['bob'] = 27;

for (var name in age)

BGA

{

document.write ("Age of " + name +

" is " 4+ age[name] + '"<br>");

examples/simple/array3.html
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i Primitive & Reference Types

= Numbers and booleans are primitive types
= Call by value is used for primitive types
= Objects are reference types as in Java

= Call by value is also used for reference types
but the value is a reference as in Java

= Arrays and Strings are also reference types

= Strings are immutable. They have references
but act like primitive types since the
reference cannot be used to change them.
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i The null value

= As in Java, object references can be
assigned the value null to indicate that

they don't yet refer to any object.

BGA
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i Comments

= Two styles of comments

BGA
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i JavaScript Operators (1)

= For the most part Java and JavaScript
operators are similar

= There are some important differences.

= JavaScript has =, ==, and === operators.
= = s used for assignment
= == s used to test for equality

m === s used to test for identity
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i JavaScript Operators (2)

= Numbers, strings and boolean values are
compared by value so == and === have the

same meaning.
= For strings in Java == is useless since it

compares references but in JavaScript it
compares the characters in the strings.

= Objects are compared by reference so ==
compares references.
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i JavaScript Operators (3)

= In general, for objects the rules for == and

=== gre complicated.

s then

= If you are defining your own objec
write your own equality method.

= For Strings the operators <=, <, >, >=, ==,
and '= compare characters (in Java we need
compareTo). In JavaScript there is also a

localeCompare () method.

BGA

50



i JavaScript Operators (4)

= The in and instanceof operators

= The in operator can be used to check if an
object has a certain property.

= It can also be used to iterate over the
properties of an object.

= The instanceof operator is same as in
Java and is used to check if an object has a
given type.
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i JavaScript Operators (5)

= String Concatenation operator

= Use +, numbers are converted to strings if one
operand is a number and the other is a string.

= There are many string methods too
= See later

BGA 52



i JavaScript Operators (6)

= The typeof operator

= Unary operator to check the generic data
type of a variable.

= The possible values are "number”, "string",
"boolean”, "object", "undefined"

= Use instanceof to distinguish among
different object types.
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i JavaScript Operators (7)

= the delete operator

= Unary operator

= Can be used to delete a property of an
object

= Can be used to delete an array element

= Note: JavaScript has garbage collection, like
Java, so delete is not related to this kind of

deletion.
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i JavaScript Operators (8)

= The new operator

= Unary operator
= As in Java it is used to construct an object.

BGA
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i JavaScript Operators (9)

= the void operator

= A strange unary operator

= When it is applied to a method call
expression it throws away the return value
and returns the undefined value.

= Used in hypertext links:
href="javascript:void ...

so that browser won't display return value
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i Statements (1)

= EXpression Statements

= Examples:
= count++;

» alert("This is a warning") ;

s document.write ("Hello") ;

BGA
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i Statements (2)

= Assignment statements

= Examples
svar y = 1.0;
= x =1.5;
= hypot = Math.sqrt(x*x + y*y);

s w = window.open(...);

BGA

58



i Statements (3)

= Compound statement

{

one or more statements

}

BGA
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i Statements (4)

m if, if-else, and if-else if statements

s These have the same structure as the

corresponding statement in Java. Example:
if (...)
{

else
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i Statements (5)

s while statement

= Same structure as the corresponding
statement in Java. Example:

while (...)
{

}

BGA
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i Statements (6)

= do-while statement

= Same structure as the corresponding
statement in Java. Example:

do
{

} wﬂiie (...);

BGA
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i Statements (7)

s for statement

= Same structure as the corresponding
statement in Java (more like the C++ for
loop than Java)

for(... ; ...; ...)
{

}

BGA
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i Statements (8)

for in statement

for (var property in object)

{
}

= The following example shows how to display

BGA

a table of window and document properties

examples/simple/for-in.html
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i Statements (9)

s The return statement returns a value from
a function

= Example:

return 1.0 - Math.pow(1.0 + i, -n)) / 1i;
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i Statements (10)

= Other types of statements
m var

= label

= continue

= function

= throw

s try / catch / finally
= with

BGA
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i factorial function (1)

// Compute n!
function factorial (n)

{
var p = 1;
for (var k = 2; k <= n; k++)
P=P * k;
return p;

BGA
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i factorial function (2)

function factorialTable ()
{
document.write ("<pre>") ;
for (var k = 0; k <= 25; k++)
{
document.writeln(k + "! =" +
factorial (k)) ;
}

document.write ("</pre>") ;

examples/simple/factorial.html

BGA
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reverse string function (1)

// reverse the string s

function reverse (s)

{

var sReverse = "";
for (var k = 0; k < s.length; k++)

{

sReverse = s.charAt (k) + sReverse;

}

return sReverse;

BGA
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reverse string function (2)

// Recursive version
function recursiveReverse (s)
{
if (s.length <= 1) return s;
return
recursiveReverse (s.substring(1l)) +
s.charAt (0) ;

examples/simple/reverse.html

BGA
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i max function (1)

// f£inding max value in an array
function maxArray (a)

{

var maxValue = Number NEGATIVE INFINITY;

for (var k = 0; k < a.length; k++)
{

if (a[k] > maxValue) maxValue = alk];

}

return maxValue;

BGA
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i max function (2)

= It can be tested using the HTML

The maximum of the numbers 3,4,5,-1,-2 is

<script language='"javascript">

document.write (maxArray([3,4,5,-1,-2]));

</script>

A literal array

BGA
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i max function (3)

// f£inding max value in arg list

function max () ﬁ\MEEE;foankshkeﬂﬁs
{

var maxValue = Number NEGATIVE INFINITY;
for (var k = 0; k < arguments.length; k++)
{

if (arguments[k] > maxValue)

maxValue = arguments[k];

}

return maxValue;

BGA

special array of
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i max function (4)

= It can be tested using the HTML

The maximum of the numbers 3,4,5,-1,-2 is
<script language='"javascript'>

document.write(max(3,4,5,-1,-2));
</script>

examples/simple/max.html

BGA
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i format function (1)

function format(n, w)

{
var val = Math.round(n * 100) / 100;
var s = val + "";
if (s.indexOf(".") < 0) s =s + ".00";
if (s.indexOf(".") == s.length-2) s =s + "0";
var spaces = w - s.length;
for (var k = 1; k <= spaces; k++)
{
s =""+s5;

}

return s;
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i format function (2)

= format right justifies the number n in a field
of width w characters. It can be tested using

the HTML

The rounded value of 34.99999999 is
<script language="javascript'>

document.write (format (34.99999999,1));
</script>

examples/simple/format.html

BGA
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i Array methods (1)

= Arrays are created using
O Exanuﬂe:var a = new Array(...);

= The argument, if any is the number of array
elements to allocate initially.

= Arrays can also be created using an array

literal

« Example:
var a = [ "abe", 2, true, [1,2,3] 1]:
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i Array methods (2)

= Arrays are dynamic. New elements can be
added using assignment statements

= Example:
var a = [1,2,3]; // length is 3
a[3] = 5; // length is now 4
a[l0] 12; // length is now 11

= In last example a[4] to a[9] are undefined
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i Array Methods (3)

= For an array a in Java the length of a is a
read only value given by a.length

= In JavaScript it is a read / write property:
s var a = [1,2,3];
= a.length = 100;
= a[99] = 123;

= Now a has length 100 and the elements
a[3] to a[98] are undefined.

BGA
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i Array Methods (4)

= The join method conver

s all array

elements to strings and concatenates them
using, by default, a comma to separate
elements. The separator can be specified:

= Example:

var a = [1,2,3];

var s = a.join(); // gives "1,2,3"

var s = a.join(":");// gives "1:2:3:"

BGA
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i Array Methods (5)

s The reverse method reverses the order of
the elements

= Example:

var a = [1,2,3];

a.reverse(); // gives [3,2,1]

BGA
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i Array Methods (6)

= The sort method sorts the array in place.

The default is to temporarily convert
elements to strings and sort alphabetically.

= Example:

var a = [2,1,3];
a.sort(); // gives [1,2,3]

= A comparison function can be supplied as an
argument.
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i Array Methods (7)

= Sorting an array of integers in decreasing

order
var a = [1,2,3,4];
var decrease =
function(a,b) { return b-a; };
a.sort (decrease) ;

= Nowais [4,3,2,1]

BGA
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i Array Methods (8)

= Sorting an array of strings in decreasing
order

var a = ["one","two",'"three", "four"];

var decrease =

function(a,b)
{ return b.localeCompare (a) ;

}

a.sort (decrease) ;

= NOw a IS ["two" , "three","one", "four"]

BGA
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i Array Methods (9)

s The concat method concatenates elements
to the end of an array.

= Example:

var a = [1,2];
var b = a.concat(3,4); // gives[1l,2,3,4]

= Note that concat does not change the
array a. It creates a new one.
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i Array Methods (10)

= The slice method returns a new array that
IS a subarray of the array.

. Example

var a [10,11,12,13,14,15];
a.slice(2,5); // returns [12,13,14]
a.slice(2); // returns [12,13,14,15]

var b

var C

= Note: slice does not change the array a.
It creates a new one.

= Note: second index is one past last one used
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i Array Methods (11)

= The splice method can insert and/or

remove elements from anywhere in an array.
It modifies the array and also returns a new

Oone.

= It's a classic example of a badly defined
method that does too many things.
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i Array Methods (12)

= The push and pop methods treat the array

as a stack with the top of the stack at the
end of the array

= var s = []; empty stack
= s.push (1) ; s is [1], returns length 1
= s.push(2,3); sis[1,2,3], returns length 3

= var top = s.pop(); SIS [1,2], returns 3
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i Array Methods (13)

s The unshift and shift methods treat the

array as a stack with the top of the stack at
the start of the array

= var s = []; empty stack
= a.unshift (1) ; sis [1], returns length 1
= s.unshift(2,3); Sis[3,2,1], returns length 3

= var top = s.shift(); SIis[2,1], returns 3
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i Array Methods (14)

= Example document illustrating array
methods:

examples/simple/arrayMethods.html
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i String methods (1)

= Create a new string object
m var s = "Hello";

m var s = new String("Hello");

= Length property of a string (read only)

= var len = s.length;

= return a character of a string: There is no
char type in Javascript: a char is a one-char
string
m var ¢ = s.charAt(n);
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i String methods (2)

= Return character code (Unicode value)
m var code = s.charCodeAt(n) ;

= Concatenate one or more strings s1, s2, ...

= var s = sl.concat(s2, ...);
sl + s2 + ... ;

m vVvaxr S

= Create string from Unicode values c1, <2, ...

m var S
String.fromCharCode(cl, c2,

BGA
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i String methods (3)

= Find first index of pattern in a string s

= var index = s.indexOf (pattern);

= var index s .indexOf (pattern,

startIndex) ;

= Find last index of pattern in a string s

= var index = s.lastIndexOf (pattern);

= var index = s.lastIndexOf (pattern,
startIndex) ;

BGA
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i String methods (4)

= Compare strings in a locale dependent way.

= var result =
sl.localeCompare (s2) ;

= result is less than zero if s1 precedes s2
= result is zero if s1 equals s2
= result is greater than O if s1 follows s2

BGA

94



i String methods (5)

= Matching, replacing, or searching a string s

for a pattern specified by a regular
expression object regex.
= var a = s.match (regex) ;

= var s = s.replace (regex,
replacementString) ;

» var index = s.search(regex);

= We will consider regular expressions later
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i String methods (6)

= Create a new string from a slice of a string
s. String s is not modified.

» String sl = s.slice(start,end)

s start is the first index of the slice and
end-1 is the last index
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i String methods (7)

= Split a string s into an array of strings using
a delimiter string or regular expression to

specify the split points

= var a = s.split(delimiter);

= var a = s.split(delimiter,
maxLength) ;
= The optional maxLength arguments
specifies a maximum size for the array a.
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i String methods (8)

= Create a string that is a substring of string s

= var sub = s.substring(start, end)

= The substring begins at index start and
ends at index end - 1;

s Note: There is also a substr method which
IS deprecated.
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i String methods (9)

= Create upper or lower case versions of string

S

m var sl = s.tolocalelowerCase() ;
m var sl = s.tolocaleUpperCase() ;
» var sl = s.tolLowerCase()

m var sl = s.toUpperCase();

= Note: Strings are immutable so string s is
not modified by any of these operations.
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i Global object (1)

= This object has properties and methods that
don't fit anywhere else

= Properties
0 Infinity
x NaN

s undefined
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i Global objects (2)

= Methods:

= decodeURI (uri),
decodeURIComponent (s)

= encodeURI (uri),
encodeURIComponent (s)

m escape(s), unescape(s)
s eval (s)
m 1sFinite (n), isNaN (x)

m parseFloat(s), parselInt(s)
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i Global objects (3)

= Convert a string s to an integer or floating

point number
m var n = parselnt(s);

m var n = parseFloat(s);

s Note: these functions return the first number
found at the beginning of string s. If s does

not begin with a number NaN is returned
and can be tested using the isNaN (n)

function.
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i Global functions (4)

= Encoding and decoding a string s

m var e = escape(s);

s var £ = unescape(s);

= escape returns an encoded version of s in

which special characters are represented in
the form $xx or $uxxxx (Unicode) where x

IS @ hex digit: Example
m escape ("Hello World") IS "Hello%20World"

= unescape decodes an encoded string
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i Global functions (5)

= JavaScript can be constructed and executed
at run time using the eval function:

= eval (expression) ;
= Here expression is any string that contains

JavaScript code

s Var expr =
"Math.sqgrt (x*x + y*y);";

= var h = eval (expr) ;
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i Math object (1)

BGA

m Math.abs (x)

Math.acos (x), Math.asin(x),
Math.atan(x), Math.atan2(y,x)

Math.ceil (x), Math.floor (x)

Math.sin(x) , Math.cos (x),
Math. tan (x)

Math.E, Math.PI, Math.LN10,
Math.LN2, Math.LOGl10E, Math.LOG2E

Math.exp (x), Math.log(x)
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i Math object (2)

BGA

Math.
Math.
Math.
Math.
Math.
Math.

max (vl,v2,...)
min(vl,v2,...)
pow (x,Yy)
random ()
round (x)

sqrt (x)
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i Date class (1)

= The current date and time:
= var today = new Date();

= General constructor for day (1 to 31), month
(0 tol1), year (4 digits)

= var d = new Date(year,month,day) ;

= More general form:

= var d = new Date (year, month, day,
hours, minutes, seconds,
milliseconds) ;
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i Date class (2)

= There are at least 30 methods in this class:

BGA

getDate () , getUTCDate ()

getDay () , getUTCDay ()

getFullYear () , getUTCFullYear ()
getHours () , getUTCHours ()
getMilliseconds (), getUTCMilliseconds ()
getMinutes () , getUTCMinutes ()

getMonth () , getUTCMonth ()

getSeconds () , getUTCSeconds ()
getTimezoneOffset ()
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i Date class (3)

= There are also the corresponding set

methods

m setDate(...), setUTCDate(...)

m setFullYear(...), setUTCFullYear(...)
m setHours(...), setUTCHours(...)

m setMilliseconds(...),
setUTCMilliseconds(...)

m setMinutes(...), setUTCMinutes(...)
m setMonth(...), setUTCMonth(...)

m setSeconds(...), setUTCSeconds(...)
m Date.parse(...), Date.UTC(...)
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i Date class (4)

= Converting to strings
s toDateString (), toUTCString()

s toLocaleDateString ()

s toLocaleString ()

s toLocaleTimeString ()

s toString (), toUTCString()
» toTimeString ()

examples/simple/date.html
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i The RegExp object

= It represents regular expressions
= More on this later
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i Custom Objects

= JavaScript is a prototype based OOP

language rather than a class based one.

= Objects can be directly defined
= var point = { x:1, y:2 };
= Now point.x is 1 and point.y is 2
= var circle = {x;1, y:2, radius:3};

= NOW circle.xiS 1, circle.y iS 2 and
circle.radius is 3

s This is like struct in C
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112



i Point objects (1)

function Point(x,y)

{

this.x

two 1nstance
methods

X,
Y-

this.y

}
Point.prototype.toString = pointToString;

Point.prototype.distance = pointDistance;

Point.distance = point2Distance?2; class method

= Except for this it's like an ordinary function

= Now we need to define the instance
methods
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i Point objects (2)

function pointToString(x,y)

{

return "(" + this.x + "," + this.y + ")";
}

function pointDistance ()

{

return
Math.sqrt(this.x*this.x + this.y*this.y);
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i Point objects (3)

function pointDistance2 (pl,p2)

{
dx2 = (p2.x - pl.x) * (p2.x - pl.x);
dy2 = (p2.y - pl.y) * (p2.y - pPl.y)’
return Math.sqrt (dx2 + dy2);

A static method
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toString 1s used
automatically
as in Java

i Point objects (4)

<script>
var p = new Point(1,2);

document.write("p = " + p);
document.write("<br>x = " + p.x);
document.write ("<br>y = " + p.y);

document.write ("<br>Distance from origin is " +
p.distance()) ;
</script>

data fields (properties)
are always public
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i Point objects (5)

<script>

var pl = new Point(1l,2);

var p2 = new Point(3,4);

var d = Point.distance (pl,p2);

document.write ("<br>", "Distance from " + pl
+ " to " + p2 + " is " + d);

</script>

class method uses class
name, not object name



i Circle objects (1)

function Circle(p,r)

{

this.center P

r;

this.radius

}
Circle.prototype.toString = circleToString;

Circle.prototype.circumference =
circleCircumference;

Circle.prototype.area = circleArea;

= Except for this it's like an ordinary function
= Now we define the instance methods
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i Circle objects (2)

function circleToString(x,y)

{

return this.center + ":" 4+ this.radius;

}

function circleCircumference ()

{
return 2.0 * Math.PI * this.radius;

}

function circleArea ()

{

return Math.PI * this.radius * this.radius;
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i Circle objects (3)

<script>

var p = new Point(1,2);

var ¢ = new Circle(p,3):;

document.write("c = " + p);

document.write ("<br>", "Center is " + c.center);
document.write ("<br>", "Radius is " + c.radius);
document.write ("<br>", "Circumference is " +

c.circumference()) ;
document.write ("<br>", "Area is " + c.area()):;
</script>

examples/simple/objects.html
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i More on Objects

= There is much more to objects in JavaScript
B prOtOtypeS

= existing objects can have new properties added
to them (even built-in objects)

»« Can have both instance and class properties or
methods

= prototype based inheritance
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i Associative arrays

= Object properties can be referenced directly
circle.center
or they can be accessed as elements of
associative arrays as in
circle|['"center'"]

using the property nhame as a string
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