!'_ COSC 2206 Internet Tools

JavaScript

Browser versions
Language Versions
Core Language



i Netscape browser versions

= Netscape 2 (JavaScript 1.0, obsolete)
= Netscape 3 (JavaScript 1.1)

= Netscape 4 (JavaScript 1.2, broken)
= Netscape 4.5 (JavaScript 1.3)

= Netscape 6 / Mozilla (JavaScript 1.5)

BGA



i Microsoft browser versions

= IE 3 (JScript 1.0/ 2.0)
= IE 4 (JScript 3.0)

= IE 5 (JScript 5.0)

= IE 5.5 (JScript 5.5)

= IE 6 (JScript 5.5)

BGA



i Standardized Versions

= The ECMA (European Computer
Manufacturers Association) has standardized
JavaScript (ECMA-262) called ECMAScript

= There are 4 versions so far (v1, v2, v3, v4)

= Search web for ECMAScript if you want more
information.

= http://www.ecma-
international.org/publications/standards/Ecm
a-262.htm

BGA 4


http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

i Language Versions (1)

= JavaScript 1.0
= original obsolete version

= JavaScript 1.1

= fixed bugs, introduced proper arrays,
implemented in Netscape 3

= JavaScript 1.2

= added regular expression, almost compliant with
ECMAScript v1, implemented in Netscape 4

BGA



i Language Versions (2)

= JavaScript 1.3

=« compliant with ECMAScript v1, implemented in
Netscape 4.5

= JavaScript 1.4
= Server version

= JavaScript 1.5

= added exception handling, compliant with
ECMAScript v3, implemented in Netscape 6 and
Mozilla

BGA



i Language Versions (3)

= JScript 1.0
= like JavaScript 1.0, implemented in IE 3

= JScript 2.0
= like JavaScript 1.1, implemented in IE 3

= JScript 3.0
=« like JavaScript 1.3, compliant with ECMAScript
vl, implemented in IE 4
= JSscript 4.0
= Standalone non-browser version

BGA



i Language Versions (4)

= JScript 5.0

= added exception handling, almost compliant with
ECMAScript v3, implemented in IE 5

= JScript 5.5

= like JavaScript 1.5, compliant with ECMAScript
v3, implemented in IE 5.5 and IE 6

= ECMAScript vi, v2

= First standardized version, v2 (maintenance
release)

= ECMAScript v3 (regex and exceptions)

BGA 8



i Main language references (1)

= Netscape has online client guide to
JavaScript:

http://devedge.netscape.com/

BGA


http://devedge.netscape.com/
http://devedge.netscape.com/

i Main language references (2)

Netscape has online JavaScript client
reference at developer.netscape.com

http://devedge.netscape.com/

BGA

10


http://devedge.netscape.com/
http://devedge.netscape.com/

i Main language references (3)

BGA

For information on Microsofts versions of
javascript called JScript search for JScript at

http://msdn.microsoft.com

11


http://msdn.microsoft.com/
http://msdn.microsoft.com/

i Other references (1)

s W3schools has an excellent interactive
tutorial on JavaScript

http://www.w3schools.com

BGA


http://www.w3schools.com/
http://www.w3schools.com/

i Reference book

= JavaScript: The Definitive Guide, 4th Edition
David Flanagan

O'Reilly, 2002

ISBN: 0-596-00048-0

s This is like four books in one

BGA

= Core JavaScript

= Client-Side JavaScript

= Core JavaScript Reference

= Client-Side JavaScript Reference

13



i What is JavaScript

= High-level scripting (interpreted) language
= Untyped, prototype based OOP language
= Not a simple language

= Used to be called LiveScript and has no
connection with Java

= Borrows a lot of syntax from Java and C

= It can run in a browser (client-side) or as a
standalone scripting language (Microsoft's
JScript and WSH)

BGA 14




i Where do we put JavaScript?

= Embedded in an HTML document between
script tags
<script language="javascript'">
JavaScript statements go here
</script>

= In an external file which is loaded using

<script src="program.ijs" ...></script>

JavaScript file

Nothing between tags

BGA 15



i Where do we put <script>?

= In the head of the HTML document

= Here it is read before the HTML document in the
body is parsed. Any code, except function
definitions, will be executed immediately.

= In the body of the HTML document

= Here it is read while the HTML document is

being parsed. When the parser sees the
<script> tag it stops parsing the document

and interprets the JavaScript code.

BGA 16



i Writing HTML with JavaScript

= Later we will discuss the document object
model (DOM) that lets JavaScript interact
with the elements of an HTML document.

s For now we will use document.write ()
to produce HTML output using JavaScript.

= Example:
document.write ("<hl>Hello World</h1l>") ;

BGA 17



i Hello World program (1)

<html>

<head>

<title> ... </title>

<script language='"javascript'">
document.writeln ("<hl>Hello World</hl>");

</script>

</head> Anything here will display
<body> after the Hello World
</body>
</html>

examples/simple/HelloWorldl.html

BGA

18



i Hello World program (2)

<html>

<head>

<title> ... </title>

</head>

<body>

<script language='"javascript">
document.writeln ("<hl>Hello World</hl>");

</script>

</body>

</html>

examples/simple/HelloWorld2.html

BGA 19



i Hello World program (3)

<html><head><title> ... </title>

<script language='"javascript">

function hello()

{ document.write("<hl>Hello World</hl>"); }
</script>

</head>

<body>

<script language='"javascript'">hello() ;</script>
</body>

</html>

examples/simple/HelloWorld3.html

BGA

20



i Hello World program (4)

<html><head><title> ... </title>

<script language='"javascript" src="hello.]js">
</script>

</head>

<body>

<script language="javascript">hello() ;</script>
</body>
</html>

hello. js

examples/simple/HelloWorld4.html

function hello()

{
document.writeln("<hl>Hello World</hl>") ;

}

BGA

21



i Hello World program (5)

<html><head><title> ... </title>
<script language="javascript'>
window.alert ("Hello World") ;
</script>
</head>
<body>
Close alert box to see this text.<br>

An alert box

Use reload to run the script again.
</body>
</html>

examples/simple/HelloWorld5.html

BGA

22



i Hello World program (6)

<html><head><title> ... </title>
<script language="javascript'>
function hello()
{ document.write ("<hl>Hello World</hl>"); }
</script>

</head> (/?fyoudothSthe
<body onload="hello() "> | back button won't
This text will never be s;;;T\\\\\\\\\¥ work
</body> this is
</heml> Microserf
specific

examples/simple/HelloWorld6.html

BGA 23



i Insert date example

<html><head><title> ... </title>

</head>

<body>

<hl>Inserting the date into a document</hl>
The date 1is

<script language='"javascript'>

document.write (new Date()) ;

</script> right now.
</body>
</html>

create a Date object
and call its toString
method

examples/simple/insertDate.html

BGA

24



i JavaScript Variables

= JavaScript is an untyped language so a
variable can hold any kind of value.

= The var keyword is used to define variables.

var 1 = 1; -
i = "a string"; No type is used

1 = new Date();

= If it is omitted the variable is implicitly
declared as a variable with global scope.

m JavaScript is case-sensitive

BGA 25



i Variable types

= Just because JavaScript is untyped doesn't
mean that there are no data types:

= Number type

= NO distinction between integer and floating point
numbers (64 bits)

= String type and string literals
= literals enclosed in single or double quotes
= strings are like immutable objects

= Array type, Object type, many other types

BGA 26




i Variable Scoping (1)

= Unlike Java, JavaScript is not block-scoped
= Example:

In Java, sum is

{ local to the block.
In JavaScript
var sum = 0.0; it is local to the
enclosing function
}

BGA 27



i Variable scoping (2)

= A local variable (declared inside a function)
will hide a global variable with the same
name.

= Attempting to use a variable that has been

declared but not initialized gives the
undefined value. In this sense all declared

variables have a value.

BGA 28



i Number Data Type

= Number is an object type that represents
integers and floating point numbers

= Floating point numbers are 64-bit IEEE
= There is no separate integer type

= A floating point value can store an integer
exactly in the range -2~ to 2~

= Floating point literals have a decimal point or
e, E to represent the exponent.

= +, -, *, / are floating point operations

BGA 29



i Special Number values

m Infinity
m NaN
= Not a number
= Number .MAX VALUE
= largest positive number
s Number. MIN VALUE
= sSmallest non-zero positive number
s Number. POSITIVE INFINITY

= Number .NEGATIVE INFINITY

BGA

30



i String Data Type (1)

= Strings are like immutable objects and are
very similar to strings in Java

= String literals can use single or double
quotes as delimiters. \ acts as an escape

so \n refers to the newline character.

= The following are the same
= var s = "hello";

= var s new String("hello");

there is no reason to
BGA ever do this 31




i String Data Type (2)

= There are many string methods and most
are the same as in Java

= s.length (thisis a property)
.substring (1)
.substring (i, j)
.charAt (1)

.indexOf (pattern)

|
n O n

BGA



i Boolean data type

= Like Java, the literals true and false are
the values of a boolean variable in JavaScript

= Unlike Java, JavaScript can convert them to
1 and 0 to use in expressions as needed

BGA 33



i Standard functions

= Functions are very different than in Java

= We can have standard function definitions
like

function square (x)

{

return x * x;

}
= No types are specified.
s Function like this are similar to Java methods

BGA 34




i Function literals (1)

= They have no correspondence in Java

= Function literals are unnamed functions like
the lambda functions in Lisp that can be
assigned as the value of a variable.

= Example

var square =
function(x) {return x*x;}

= Used the same way as a standard function:
var s = square(2.0);

BGA 35



i Function Literals (2)

= Function literals can be used as arguments
to other functions:
var comp = function compare (x,YVy)

{ return x - y; }

= Now if we have a sort function that needs

a comparison function we can call it like
d.sort (comp)
where a is the array to sort

BGA 36



i The Function constructor

= Functions can be constructed at run-time
using a function constructor:
var square = Function

"x", "return x*x;");

= Here the first argument is the function
argument list and the second argument is
the function body.

= There is no correspondence in Java

BGA 37



i Object Types (1)

= An uninitialized object
var obj = new Object();

= A Date object for today

var today = new Date();

= A Date object for Jan 1, 2002, 0 hours

var newYear =
new Date (2002,0,1,0,0,0,0);

BGA

38



i Object Types (2)

= Data fields of a Java object are properties in
JavaScript. They are always public and are
accessed directly using the dot notation:
document.myForm.myName

= Here document is a predefined object
referring to the HTML document, myForm is
the name of a form and myName is the name

of the specified input object. For example

type="text" name="myName" ...

BGA 39



i Object Types (3)

= If @ Rectangle object rect has width and

height properties they can be accessed as

rect.width (same as rect['width'])
rect.height (Ssame as rect['height'])

= Methods are also invoked using dot notation

= Instance method example
document.write("...");

= Static method example
var s2 = Math.sqgrt(2.0) ;

BGA 40



i Object Types (4)

= Simple custom objects (no methods)
var point = new Object();

point.x = 3.2;

point.y = -1.7;
= point is an object with properties x and y
= Object literals can also be used to directly

construct objects
var point = { x:3.2, y:-1.7 };

BGA 41



i Array Types (1)

= Unlike Java, arrays are dynamic in Java

= Example: Declare an array with no elements
and then add some elements
var a = new Array()

af[0]=1; a[l]l=2; a[2]=3; a[9]=10;
s There are 10 elements but 6 are undefined
= Length of array is a. length

examples/simple/arrayl.html

BGA 47



i Array Types (2)

= Arrays can be inhomogeneous:

var b = new Array (123, "Fred",
345.50, new Array(1,2,3));

= Array literals can be used
var b = [123, "Fred", 345.50];

var m = [ [1,2,3], [4,5,6], [7,8,9]];
= There are many array methods (later)

examples/simple/array2.html

BGA



i Array Types (3)

= Arrays can be associative:

var age = new Array();

age['fred'] = 34; age['jim'] = 13;
age['bob'] = 27;

for (var name in age)

BGA

{

document.write ("Age of " + name +

" is " 4+ age[name] + '"<br>");

examples/simple/array3.html

44



i Primitive & Reference Types

= Numbers and booleans are primitive types
= Call by value is used for primitive types
= Objects are reference types as in Java

= Call by value is also used for reference types
but the value is a reference as in Java

= Arrays and Strings are also reference types

= Strings are immutable. They have references
but act like primitive types since the
reference cannot be used to change them.

BGA 45



i The null value

= As in Java, object references can be
assigned the value null to indicate that

they don't yet refer to any object.

BGA

46



i Comments

= Two styles of comments

BGA

47



i JavaScript Operators (1)

= For the most part Java and JavaScript
operators are similar

= There are some important differences.

= JavaScript has =, ==, and === operators.
= = s used for assignment
= == s used to test for equality

m === s used to test for identity

BGA 48



i JavaScript Operators (2)

= Numbers, strings and boolean values are
compared by value so == and === have the

same meaning.
= For strings in Java == is useless since it

compares references but in JavaScript it
compares the characters in the strings.

= Objects are compared by reference so ==
compares references.

BGA 49



i JavaScript Operators (3)

= In general, for objects the rules for == and

=== gre complicated.

s then

= If you are defining your own objec
write your own equality method.

= For Strings the operators <=, <, >, >=, ==,
and '= compare characters (in Java we need
compareTo). In JavaScript there is also a

localeCompare () method.

BGA

50



i JavaScript Operators (4)

= The in and instanceof operators

= The in operator can be used to check if an
object has a certain property.

= It can also be used to iterate over the
properties of an object.

= The instanceof operator is same as in
Java and is used to check if an object has a
given type.

BGA 51



i JavaScript Operators (5)

= String Concatenation operator

= Use +, numbers are converted to strings if one
operand is a number and the other is a string.

= There are many string methods too
= See later

BGA 52



i JavaScript Operators (6)

= The typeof operator

= Unary operator to check the generic data
type of a variable.

= The possible values are "number”, "string",
"boolean”, "object", "undefined"

= Use instanceof to distinguish among
different object types.

BGA



i JavaScript Operators (7)

= the delete operator

= Unary operator

= Can be used to delete a property of an
object

= Can be used to delete an array element

= Note: JavaScript has garbage collection, like
Java, so delete is not related to this kind of

deletion.

BGA 54



i JavaScript Operators (8)

= The new operator

= Unary operator
= As in Java it is used to construct an object.

BGA

55



i JavaScript Operators (9)

= the void operator

= A strange unary operator

= When it is applied to a method call
expression it throws away the return value
and returns the undefined value.

= Used in hypertext links:
href="javascript:void ...

so that browser won't display return value

BGA 56



i Statements (1)

= EXpression Statements

= Examples:
= count++;

» alert("This is a warning") ;

s document.write ("Hello") ;

BGA

57



i Statements (2)

= Assignment statements

= Examples
svar y = 1.0;
= x =1.5;
= hypot = Math.sqrt(x*x + y*y);

s w = window.open(...);

BGA

58



i Statements (3)

= Compound statement

{

one or more statements

}

BGA

59



i Statements (4)

m if, if-else, and if-else if statements

s These have the same structure as the

corresponding statement in Java. Example:
if (...)
{

else

BGA 60



i Statements (5)

s while statement

= Same structure as the corresponding
statement in Java. Example:

while (...)
{

}

BGA

61



i Statements (6)

= do-while statement

= Same structure as the corresponding
statement in Java. Example:

do
{

} wﬂiie (...);

BGA

62



i Statements (7)

s for statement

= Same structure as the corresponding
statement in Java (more like the C++ for
loop than Java)

for(... ; ...; ...)
{

}

BGA

63



i Statements (8)

for in statement

for (var property in object)

{
}

= The following example shows how to display

BGA

a table of window and document properties

examples/simple/for-in.html

64



i Statements (9)

s The return statement returns a value from
a function

= Example:

return 1.0 - Math.pow(1.0 + i, -n)) / 1i;

BGA 65



i Statements (10)

= Other types of statements
m var

= label

= continue

= function

= throw

s try / catch / finally
= with

BGA

66



i factorial function (1)

// Compute n!
function factorial (n)

{
var p = 1;
for (var k = 2; k <= n; k++)
P=P * k;
return p;

BGA

67



i factorial function (2)

function factorialTable ()
{
document.write ("<pre>") ;
for (var k = 0; k <= 25; k++)
{
document.writeln(k + "! =" +
factorial (k)) ;
}

document.write ("</pre>") ;

examples/simple/factorial.html

BGA

68



reverse string function (1)

// reverse the string s

function reverse (s)

{

var sReverse = "";
for (var k = 0; k < s.length; k++)

{

sReverse = s.charAt (k) + sReverse;

}

return sReverse;

BGA

69



reverse string function (2)

// Recursive version
function recursiveReverse (s)
{
if (s.length <= 1) return s;
return
recursiveReverse (s.substring(1l)) +
s.charAt (0) ;

examples/simple/reverse.html

BGA

70



i max function (1)

// f£inding max value in an array
function maxArray (a)

{

var maxValue = Number NEGATIVE INFINITY;

for (var k = 0; k < a.length; k++)
{

if (a[k] > maxValue) maxValue = alk];

}

return maxValue;

BGA

71



i max function (2)

= It can be tested using the HTML

The maximum of the numbers 3,4,5,-1,-2 is

<script language='"javascript">

document.write (maxArray([3,4,5,-1,-2]));

</script>

A literal array

BGA

72



i max function (3)

// f£inding max value in arg list

function max () ﬁ\MEEE;foankshkeﬂﬁs
{

var maxValue = Number NEGATIVE INFINITY;
for (var k = 0; k < arguments.length; k++)
{

if (arguments[k] > maxValue)

maxValue = arguments[k];

}

return maxValue;

BGA

special array of
function arguments

73



i max function (4)

= It can be tested using the HTML

The maximum of the numbers 3,4,5,-1,-2 is
<script language='"javascript'>

document.write(max(3,4,5,-1,-2));
</script>

examples/simple/max.html

BGA

74



i format function (1)

function format(n, w)

{
var val = Math.round(n * 100) / 100;
var s = val + "";
if (s.indexOf(".") < 0) s =s + ".00";
if (s.indexOf(".") == s.length-2) s =s + "0";
var spaces = w - s.length;
for (var k = 1; k <= spaces; k++)
{
s =""+s5;

}

return s;

BGA



i format function (2)

= format right justifies the number n in a field
of width w characters. It can be tested using

the HTML

The rounded value of 34.99999999 is
<script language="javascript'>

document.write (format (34.99999999,1));
</script>

examples/simple/format.html

BGA

76



i Array methods (1)

= Arrays are created using
O Exanuﬂe:var a = new Array(...);

= The argument, if any is the number of array
elements to allocate initially.

= Arrays can also be created using an array

literal

« Example:
var a = [ "abe", 2, true, [1,2,3] 1]:

BGA 77



i Array methods (2)

= Arrays are dynamic. New elements can be
added using assignment statements

= Example:
var a = [1,2,3]; // length is 3
a[3] = 5; // length is now 4
a[l0] 12; // length is now 11

= In last example a[4] to a[9] are undefined

BGA 78



i Array Methods (3)

= For an array a in Java the length of a is a
read only value given by a.length

= In JavaScript it is a read / write property:
s var a = [1,2,3];
= a.length = 100;
= a[99] = 123;

= Now a has length 100 and the elements
a[3] to a[98] are undefined.

BGA

79



i Array Methods (4)

= The join method conver

s all array

elements to strings and concatenates them
using, by default, a comma to separate
elements. The separator can be specified:

= Example:

var a = [1,2,3];

var s = a.join(); // gives "1,2,3"

var s = a.join(":");// gives "1:2:3:"

BGA

80



i Array Methods (5)

s The reverse method reverses the order of
the elements

= Example:

var a = [1,2,3];

a.reverse(); // gives [3,2,1]

BGA

81



i Array Methods (6)

= The sort method sorts the array in place.

The default is to temporarily convert
elements to strings and sort alphabetically.

= Example:

var a = [2,1,3];
a.sort(); // gives [1,2,3]

= A comparison function can be supplied as an
argument.

BGA 82



i Array Methods (7)

= Sorting an array of integers in decreasing

order
var a = [1,2,3,4];
var decrease =
function(a,b) { return b-a; };
a.sort (decrease) ;

= Nowais [4,3,2,1]

BGA

83



i Array Methods (8)

= Sorting an array of strings in decreasing
order

var a = ["one","two",'"three", "four"];

var decrease =

function(a,b)
{ return b.localeCompare (a) ;

}

a.sort (decrease) ;

= NOw a IS ["two" , "three","one", "four"]

BGA

84



i Array Methods (9)

s The concat method concatenates elements
to the end of an array.

= Example:

var a = [1,2];
var b = a.concat(3,4); // gives[1l,2,3,4]

= Note that concat does not change the
array a. It creates a new one.

BGA 85



i Array Methods (10)

= The slice method returns a new array that
IS a subarray of the array.

. Example

var a [10,11,12,13,14,15];
a.slice(2,5); // returns [12,13,14]
a.slice(2); // returns [12,13,14,15]

var b

var C

= Note: slice does not change the array a.
It creates a new one.

= Note: second index is one past last one used

BGA 86



i Array Methods (11)

= The splice method can insert and/or

remove elements from anywhere in an array.
It modifies the array and also returns a new

Oone.

= It's a classic example of a badly defined
method that does too many things.

BGA 87



i Array Methods (12)

= The push and pop methods treat the array

as a stack with the top of the stack at the
end of the array

= var s = []; empty stack
= s.push (1) ; s is [1], returns length 1
= s.push(2,3); sis[1,2,3], returns length 3

= var top = s.pop(); SIS [1,2], returns 3

BGA 88



i Array Methods (13)

s The unshift and shift methods treat the

array as a stack with the top of the stack at
the start of the array

= var s = []; empty stack
= a.unshift (1) ; sis [1], returns length 1
= s.unshift(2,3); Sis[3,2,1], returns length 3

= var top = s.shift(); SIis[2,1], returns 3

BGA 89



i Array Methods (14)

= Example document illustrating array
methods:

examples/simple/arrayMethods.html

BGA



i String methods (1)

= Create a new string object
m var s = "Hello";

m var s = new String("Hello");

= Length property of a string (read only)

= var len = s.length;

= return a character of a string: There is no
char type in Javascript: a char is a one-char
string
m var ¢ = s.charAt(n);

BGA 91



i String methods (2)

= Return character code (Unicode value)
m var code = s.charCodeAt(n) ;

= Concatenate one or more strings s1, s2, ...

= var s = sl.concat(s2, ...);
sl + s2 + ... ;

m vVvaxr S

= Create string from Unicode values c1, <2, ...

m var S
String.fromCharCode(cl, c2,

BGA

)

92



i String methods (3)

= Find first index of pattern in a string s

= var index = s.indexOf (pattern);

= var index s .indexOf (pattern,

startIndex) ;

= Find last index of pattern in a string s

= var index = s.lastIndexOf (pattern);

= var index = s.lastIndexOf (pattern,
startIndex) ;

BGA

93



i String methods (4)

= Compare strings in a locale dependent way.

= var result =
sl.localeCompare (s2) ;

= result is less than zero if s1 precedes s2
= result is zero if s1 equals s2
= result is greater than O if s1 follows s2

BGA

94



i String methods (5)

= Matching, replacing, or searching a string s

for a pattern specified by a regular
expression object regex.
= var a = s.match (regex) ;

= var s = s.replace (regex,
replacementString) ;

» var index = s.search(regex);

= We will consider regular expressions later

BGA

95



i String methods (6)

= Create a new string from a slice of a string
s. String s is not modified.

» String sl = s.slice(start,end)

s start is the first index of the slice and
end-1 is the last index

BGA

96



i String methods (7)

= Split a string s into an array of strings using
a delimiter string or regular expression to

specify the split points

= var a = s.split(delimiter);

= var a = s.split(delimiter,
maxLength) ;
= The optional maxLength arguments
specifies a maximum size for the array a.

BGA 97



i String methods (8)

= Create a string that is a substring of string s

= var sub = s.substring(start, end)

= The substring begins at index start and
ends at index end - 1;

s Note: There is also a substr method which
IS deprecated.

BGA 98



i String methods (9)

= Create upper or lower case versions of string

S

m var sl = s.tolocalelowerCase() ;
m var sl = s.tolocaleUpperCase() ;
» var sl = s.tolLowerCase()

m var sl = s.toUpperCase();

= Note: Strings are immutable so string s is
not modified by any of these operations.

BGA 99



i Global object (1)

= This object has properties and methods that
don't fit anywhere else

= Properties
0 Infinity
x NaN

s undefined

BGA 100



i Global objects (2)

= Methods:

= decodeURI (uri),
decodeURIComponent (s)

= encodeURI (uri),
encodeURIComponent (s)

m escape(s), unescape(s)
s eval (s)
m 1sFinite (n), isNaN (x)

m parseFloat(s), parselInt(s)

BGA 101



i Global objects (3)

= Convert a string s to an integer or floating

point number
m var n = parselnt(s);

m var n = parseFloat(s);

s Note: these functions return the first number
found at the beginning of string s. If s does

not begin with a number NaN is returned
and can be tested using the isNaN (n)

function.

BGA 102



i Global functions (4)

= Encoding and decoding a string s

m var e = escape(s);

s var £ = unescape(s);

= escape returns an encoded version of s in

which special characters are represented in
the form $xx or $uxxxx (Unicode) where x

IS @ hex digit: Example
m escape ("Hello World") IS "Hello%20World"

= unescape decodes an encoded string

BGA 103



i Global functions (5)

= JavaScript can be constructed and executed
at run time using the eval function:

= eval (expression) ;
= Here expression is any string that contains

JavaScript code

s Var expr =
"Math.sqgrt (x*x + y*y);";

= var h = eval (expr) ;

BGA 104



i Math object (1)

BGA

m Math.abs (x)

Math.acos (x), Math.asin(x),
Math.atan(x), Math.atan2(y,x)

Math.ceil (x), Math.floor (x)

Math.sin(x) , Math.cos (x),
Math. tan (x)

Math.E, Math.PI, Math.LN10,
Math.LN2, Math.LOGl10E, Math.LOG2E

Math.exp (x), Math.log(x)

105



i Math object (2)

BGA

Math.
Math.
Math.
Math.
Math.
Math.

max (vl,v2,...)
min(vl,v2,...)
pow (x,Yy)
random ()
round (x)

sqrt (x)

106



i Date class (1)

= The current date and time:
= var today = new Date();

= General constructor for day (1 to 31), month
(0 tol1), year (4 digits)

= var d = new Date(year,month,day) ;

= More general form:

= var d = new Date (year, month, day,
hours, minutes, seconds,
milliseconds) ;

BGA 107



i Date class (2)

= There are at least 30 methods in this class:

BGA

getDate () , getUTCDate ()

getDay () , getUTCDay ()

getFullYear () , getUTCFullYear ()
getHours () , getUTCHours ()
getMilliseconds (), getUTCMilliseconds ()
getMinutes () , getUTCMinutes ()

getMonth () , getUTCMonth ()

getSeconds () , getUTCSeconds ()
getTimezoneOffset ()

108



i Date class (3)

= There are also the corresponding set

methods

m setDate(...), setUTCDate(...)

m setFullYear(...), setUTCFullYear(...)
m setHours(...), setUTCHours(...)

m setMilliseconds(...),
setUTCMilliseconds(...)

m setMinutes(...), setUTCMinutes(...)
m setMonth(...), setUTCMonth(...)

m setSeconds(...), setUTCSeconds(...)
m Date.parse(...), Date.UTC(...)

BGA 109



i Date class (4)

= Converting to strings
s toDateString (), toUTCString()

s toLocaleDateString ()

s toLocaleString ()

s toLocaleTimeString ()

s toString (), toUTCString()
» toTimeString ()

examples/simple/date.html

BGA 110



i The RegExp object

= It represents regular expressions
= More on this later

BGA 111



i Custom Objects

= JavaScript is a prototype based OOP

language rather than a class based one.

= Objects can be directly defined
= var point = { x:1, y:2 };
= Now point.x is 1 and point.y is 2
= var circle = {x;1, y:2, radius:3};

= NOW circle.xiS 1, circle.y iS 2 and
circle.radius is 3

s This is like struct in C

BGA

112



i Point objects (1)

function Point(x,y)

{

this.x

two 1nstance
methods

X,
Y-

this.y

}
Point.prototype.toString = pointToString;

Point.prototype.distance = pointDistance;

Point.distance = point2Distance?2; class method

= Except for this it's like an ordinary function

= Now we need to define the instance
methods

BGA 113



i Point objects (2)

function pointToString(x,y)

{

return "(" + this.x + "," + this.y + ")";
}

function pointDistance ()

{

return
Math.sqrt(this.x*this.x + this.y*this.y);

BGA 114



i Point objects (3)

function pointDistance2 (pl,p2)

{
dx2 = (p2.x - pl.x) * (p2.x - pl.x);
dy2 = (p2.y - pl.y) * (p2.y - pPl.y)’
return Math.sqrt (dx2 + dy2);

A static method

BGA 115



toString 1s used
automatically
as in Java

i Point objects (4)

<script>
var p = new Point(1,2);

document.write("p = " + p);
document.write("<br>x = " + p.x);
document.write ("<br>y = " + p.y);

document.write ("<br>Distance from origin is " +
p.distance()) ;
</script>

data fields (properties)
are always public

BGA

116



i Point objects (5)

<script>

var pl = new Point(1l,2);

var p2 = new Point(3,4);

var d = Point.distance (pl,p2);

document.write ("<br>", "Distance from " + pl
+ " to " + p2 + " is " + d);

</script>

class method uses class
name, not object name



i Circle objects (1)

function Circle(p,r)

{

this.center P

r;

this.radius

}
Circle.prototype.toString = circleToString;

Circle.prototype.circumference =
circleCircumference;

Circle.prototype.area = circleArea;

= Except for this it's like an ordinary function
= Now we define the instance methods

BGA 118



i Circle objects (2)

function circleToString(x,y)

{

return this.center + ":" 4+ this.radius;

}

function circleCircumference ()

{
return 2.0 * Math.PI * this.radius;

}

function circleArea ()

{

return Math.PI * this.radius * this.radius;

BGA

119



i Circle objects (3)

<script>

var p = new Point(1,2);

var ¢ = new Circle(p,3):;

document.write("c = " + p);

document.write ("<br>", "Center is " + c.center);
document.write ("<br>", "Radius is " + c.radius);
document.write ("<br>", "Circumference is " +

c.circumference()) ;
document.write ("<br>", "Area is " + c.area()):;
</script>

examples/simple/objects.html

BGA 120



i More on Objects

= There is much more to objects in JavaScript
B prOtOtypeS

= existing objects can have new properties added
to them (even built-in objects)

»« Can have both instance and class properties or
methods

= prototype based inheritance

BGA 121



i Associative arrays

= Object properties can be referenced directly
circle.center
or they can be accessed as elements of
associative arrays as in
circle|['"center'"]

using the property nhame as a string

BGA 122



	COSC 2206 Internet Tools
	Netscape browser versions
	Microsoft browser versions
	Standardized Versions
	Language Versions (1)
	Language Versions (2)
	Language Versions (3)
	Language Versions (4)
	Main language references (1)
	Main language references (2)
	Main language references (3)
	Other references (1)
	Reference book
	What is JavaScript
	Where do we put JavaScript?
	Where do we put <script>?
	Writing HTML with JavaScript
	Hello World program (1)
	Hello World program (2)
	Hello World program (3)
	Hello World program (4)
	Hello World program (5)
	Hello World program (6)
	Insert date example
	JavaScript Variables
	Variable types
	Variable Scoping (1)
	Variable scoping (2)
	Number Data Type
	Special Number values
	String Data Type (1)
	String Data Type (2)
	Boolean data type
	Standard functions
	Function literals (1)
	Function Literals (2)
	The Function constructor
	Object Types (1)
	Object Types (2)
	Object Types (3)
	Object Types (4)
	Array Types (1)
	Array Types (2)
	Array Types (3)
	Primitive & Reference Types
	The null value
	Comments
	JavaScript Operators (1)
	JavaScript Operators (2)
	JavaScript Operators (3)
	JavaScript Operators (4)
	JavaScript Operators (5)
	JavaScript Operators (6)
	JavaScript Operators (7)
	JavaScript Operators (8)
	JavaScript Operators (9)
	Statements (1)
	Statements (2)
	Statements (3)
	Statements (4)
	Statements (5)
	Statements (6)
	Statements (7)
	Statements (8)
	Statements (9)
	Statements (10)
	factorial function (1)
	factorial function (2)
	reverse string function (1)
	reverse string function (2)
	max function (1)
	max function (2)
	max function (3)
	max function (4)
	format function (1)
	format function (2)
	Array methods (1)
	Array methods (2)
	Array Methods (3)
	Array Methods (4)
	Array Methods (5)
	Array Methods (6)
	Array Methods (7)
	Array Methods (8)
	Array Methods (9)
	Array Methods (10)
	Array Methods (11)
	Array Methods (12)
	Array Methods (13)
	Array Methods (14)
	String methods (1)
	String methods (2)
	String methods (3)
	String methods (4)
	String methods (5)
	String methods (6)
	String methods (7)
	String methods (8)
	String methods (9)
	Global object (1)
	Global objects (2)
	Global objects (3)
	Global functions (4)
	Global functions (5)
	Math object (1)
	Math object (2)
	Date class (1)
	Date class (2)
	Date class (3)
	Date class (4)
	The RegExp object
	Custom Objects
	Point objects (1)
	Point objects (2)
	Point objects (3)
	Point objects (4)
	Point objects (5)
	Circle objects (1)
	Circle objects (2)
	Circle objects (3)
	More on Objects
	Associative arrays

