
COSC 2206 Internet Tools

Introduction to PHP
Installing PHP (brief)
Language Summary
http://localhost/php/

<?php
...

?>

<?php
...

?>

http://localhost/php/
http://localhost/php/

Introduction to PHP

Origins of PHP
Important Features

Version Incompatibilities

7/28/2004 BGA 3

PHP Timeline

Rasmus Lerdorf's Personal Home Page tools,
1994
Later recursively renamed to PHP Hypertext
Processor
PHP 1.0, June 1995
PHP 2.0, April 1996
PHP 3.0, June 1998
We are using version 4.3.7 (June 2003)

7/28/2004 BGA 4

Important PHP Features (1)

Designed from beginning as a server-side
web scripting language.
Runs on all major operating systems.
Built-in support for several relational
databases such as MySQL
Built-in support for session management
using cookies and / or URL rewriting.
Can also be used for command-line scripting

7/28/2004 BGA 5

Important PHP Features (2)

Interpreted language
Loosely typed language

a variable can hold a value of any type at
different stages in its lifetime

Hybrid language
can be used in a non object-oriented style or an
object-oriented style or a mixture of both.

Currently the most popular web scripting
language

7/28/2004 BGA 6

Important PHP features (3)

Can be configured as a CGI process
This is inefficient.
a separate process is needed for each
connection to the web server.

Can be configured as an Apache module
This is efficient.
one instance of the PHP interpreter remains
running as long as the web server is running.

7/28/2004 BGA 7

Version incompatibilities

The latest versions 4.1 and above are
not compatible with earlier versions if
register_globals is set to off
(now the default in the php.ini file).
It is highly recommended to leave it off for security
reasons. We will assume this.
This means that values in certain global arrays are
no longer mapped to variables in PHP.
More on this when we do web apps in PHP

WarningWarning

COSC 2206 Internet Tools

Brief PHP Installation Instructions
Windows XP

7/28/2004 BGA 9

Installing PHP for Win XP

Here we give only a brief description of
installation
More complete details are available on the
course CD-ROM or online at

http://www.cs.laurentian.ca/badams/c2206/install-notes/php/

http://www.cs.laurentian.ca/badams/c2206/install-notes/php/
http://www.cs.laurentian.ca/badams/c2206/install-notes/php/

7/28/2004 BGA 10

Getting PHP

Go to www.php.net to get the software.
It's also on the CD-ROM (version 4.3.7)

For windows it should have a name like
php-4.3.7-Win32.zip
Unzip it into your top level c:\ directory
This gives a directory called
c:\php-4.3.7-Win32
Rename this directory to just c:\php

http://www.php.net/

7/28/2004 BGA 11

Getting PHP documentation

The documentation is an 1800 page manual
and it is necessary to have it.
It comes in several formats but the best for
Windows is the help file format
To get this format download the file
php_manual_chm_12.zip
Unzip it in your c:\php\docs directory and
put a shortcut to it on your start menu
It is also available on the CD

7/28/2004 BGA 12

php.ini configuration file

In the directory c:\php you will find a
default configuration file called
php.ini-recommended

Copy it to your windows directory
c:\windows

Rename the copy to just php.ini

7/28/2004 BGA 13

Editing php.ini (1)

Make the following changes to php.ini
locate doc_root =

change to doc_root = "c:\Apache\htdocs"

locate display_errors = Off

change to display_errors = On
(for learning PHP)

We assume that Apache is installed directory
c:\Apache

7/28/2004 BGA 14

Editing php.ini (2)

Make the following changes to php.ini
Uncomment the lines
;extension=php_gd2.dll
;extension=php_pdf.dll

Replace the line
extension_dir = "./"

with
extension_dir = "c:\php\extensions"

7/28/2004 BGA 15

Editing php.ini (3)

Make the following changes to php.ini
Replace the line

session_save_path = "/tmp"

with (make directory sessions)
session_save_path = "c:\Apache\sessions"

Change the line for Windows
;include_path = ".;c:\php\includes"

to (make directory php-includes)
include_path = ".;c:\php;c:\Apache\php-
includes"

7/28/2004 BGA 16

Configuring Apache (1)

To configure PHP as an Apache module
locate the file c:\php\php4ts.dll
Copy it to
c:\windows\system32

Now it is necessary to configure apache as a
module (built-in to Apache)

7/28/2004 BGA 17

Configuring Apache (2)

Edit c:\apache\conf\httpd.conf and
add the following LoadModule statement

LoadModule php4_module c:/php/sapi/php4apache.dll

Locate the section of the file with the
AddModule statements and add the two lines

AddModule mod_php4.c
AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

This tells apache to treat files with the php
extension as executable by PHP

7/28/2004 BGA 18

Configuring Apache (3)

Restart or start Apache so that the
modifications to httpd.conf will be read.
In the command window you should see

Apache/1.3.29 (Win32) PHP/4.3.7 running

This indicates that PHP has been properly
installed as an Apache module

7/28/2004 BGA 19

PHP-Apache Integration

PHP Module

PHP
file

PHP
file

Apache
Web Server Web

BrowserSend page

Request
page

HTML
doc

HTML
doc

7/28/2004 BGA 20

Testing PHP

Create the following hello.php script

Put it in c:\apache\htdocs\testphp
Try the URL

http://localhost/testphp/hello.php

<html>
<head><title>Hello Script</title></head>
<body>
<?php echo "<h1>Hello PHP World!</h1>" ?>
</body>
</html>

Language Summary

Where does PHP code go?
Data types

Built-in functions
Control structures

7/28/2004 BGA 22

Where does PHP code go?

PHP code can be standalone (like Perl) or
embedded in HTML code (like ASP)
PHP script tags are used to distinguish PHP
code from HTML code:
<?php
PHP code goes here
?>

These tags are XML compliant and should
always be used for fully portable PHP code

Start PHP mode

End PHP mode

7/28/2004 BGA 23

8 Data Types

4 are scalar types
integer, floating point (double),
string,
boolean

2 are structured types
array and object

2 are special types
resource, NULL

7/28/2004 BGA 24

Declaring Variables

Variable types are not declared
Type is type of value currently assigned
All variables begin with a dollar sign

next character is a letter or underscore
remaining are letters, underscore or digits

$count = 0;
$name = "Fred";
$price = 45.50;
$big_num = 1.2345E23;
$success = TRUE;

case
insensitive

7/28/2004 BGA 25

Naming conventions

The convention in PHP (coming from C) is
that the underscore character is used to
simulate a space in variable names:
Example:
$number_of_files = 3;

This is different from the uppercase
convention that is used in Java
numberOfFiles = 3;

7/28/2004 BGA 26

Constants

Constants are defined using the define
function and do not begin with a dollar sign
The convention is to use all uppercase
letters and _ for names of constants
Examples:
define('COURSE', "Internet Tools");
define('CM_TO_INCH', 2.54);

Now use COURSE and CM_TO_INCH to refer
to these constants

7/28/2004 BGA 27

Case sensitivity

PHP is a weird mixture of case sensitivity
and case insensitivity
variable and constant names are case
sensitive
boolean values TRUE and FALSE are not
case sensitive.
function names are not case sensitive
Maybe they will fix this in a future version

7/28/2004 BGA 28

Three kinds of comments

C, Java style multi-line comments
/* This is a multi-line

comment
*/

C++, Java single line comments
// a single line comment

Unix shell script and Perl comments
a single line comment

7/28/2004 BGA 29

Literals and Strings

Integer literals
-1, 1, 2, 3

Floating point literals
1.234, -4.56, 1.34E-12

There are two kinds of string literal
single quotes: 'hello'
double quotes: "hello"

There are two boolean literals
TRUE, FALSE

7/28/2004 BGA 30

Variable Interpolation (1)

Interpolation takes place inside doubly
quoted strings.
This means that variables are replaced by
their values and special control sequences
such as \n take effect.
Interpolation does not take place inside
singly quoted strings so \n is just two
characters
This is similar to interpolation in Perl.

7/28/2004 BGA 31

Variable Interpolation (2)

If $name has the value "Fred" then
"Hello $name" has the value
Hello Fred
'Hello $name' has the value
Hello $name
"\$name = $name" has the value
$name = Fred
In the last case the escape character \ is
used to specify that the first $ is a literal
character.

7/28/2004 BGA 32

Displaying strings (1)

The print function displays text on the
standard output.
print("Hello $name\n");

The echo function is similar but parentheses
are not needed and several arguments can
be supplied
echo "Hello ", $name, "\n";

There is also a C-style printf function that
produces formatted output.

7/28/2004 BGA 33

Displaying strings (2)

print_r(expression)
function which displays a string representation
of a variable such as an array.

var_dump(expression)
similar output as print_r

var_export(expression)
returns a string representation of a variable. Can
be used in a print statement (like toString in
Java)

7/28/2004 BGA 34

Type casting

The type of a variable can be changed using
the typecasting operators
(int) or (integer)
(float) or (double) or (real)
(bool) or (boolean)
(string) or "......"
(array)
(object)

7/28/2004 BGA 35

Arithmetic

The usual operators are +, -, *, and /
Note that / is always a floating point divide
For integer divide use (int)($a/$b)
The remainder (mod) operator is % so if $a
and $b have integer values then $a % $b is
the remainder when $a is divided by $b.
The ++ and -- operators are available
Also we have +=, -=, *= and so on

7/28/2004 BGA 36

What is false in PHP?

In the conversion to boolean only the
following are considered to be false.

the boolean value FALSE
the integer 0
the floating point number 0.0
the empty string "" and the string "0"
an array with no elements (like array())
an object with no elements
the special value NULL, and an unset variable

7/28/2004 BGA 37

Relational Operators

PHP has the usual C and Java style operators
|| for logical or
&& for logical and
! for negation

There are also different precedence versions
or for logical or
and for logical and

7/28/2004 BGA 38

Comparison operators

PHP has the usual C and Java style operators
<, <=, ==, !=, >, >=

These operators perform type conversions if
necessary before the comparison
There are also the operators
===, and !==

These operators compare value and type so
no type conversion is done
These operators are also used for strings

7/28/2004 BGA 39

Comparison of == and ===

Suppose $a has the value "0" as a string
Suppose $b has the value 0 as an integer
Then
$a == $b is true since both "0" and 0 evaluate
to false but
$a === $b is false since $a and $b have
different types

7/28/2004 BGA 40

Conditional statements

The if statement is similar to C and Java
except elseif can be used instead of
else if >> if (booleanExpression1)

{
...

}

elseif (booleanExpression2)
{

...
}
else
{

...
}

7/28/2004 BGA 41

Testing variables

empty(variable)
returns true if variable is set and has an empty
value (for example, 0, ' ').

isset(variable)
returns true if the variable exists
also see unset

is_null(variable)
returns true if an existing variable has the null
value

7/28/2004 BGA 42

empty / isset (from manual)
<?php
$var = 0;

// Evaluates to true because $var is empty

if (empty($var))
{

echo '$var is either 0, empty, or not set at all';
}

// Evaluates as true because $var is set

if (isset($var))
{

echo '$var is set even though it is empty';
}

?>

7/28/2004 BGA 43

Math functions (1)

There are many math constants in PHP. For
example is M_PI and is M_SQRT2
Example:

π

$radius = 1.0;
$circ = 2.0 * M_PI * $radius;
$area = M_PI * $radius * $radius;
echo "Circumference is $circ\n";
echo "Area is $area\n";

2

7/28/2004 BGA 44

Math functions (2)

There are many math functions in PHP:
abs sqrt
sin cos tan
asin acos atan atan2
exp expm1 log logp1
rand round
min max
pow

and many more

COSC 2206 Internet Tools

Strings and String Functions
in PHP

7/28/2004 BGA 46

String interpolation

single or double quotes as delimiters
Variables are not interpolated in singly
quoted strings.
To include a single quote it is necessary to
use \' and to include a backslash use \\
Variables are interpolated in doubly quoted
strings and escape sequences such as \",
\n, \\, \$, \t, \{, \}, \[, \]
can be used.

7/28/2004 BGA 47

String operations (1)

The dot operator is used to concatenate
strings
"Hello " . "World" is the same as
"Hello World"

echo, print, printf, print_r,
var_dump functions display strings on
standard output
The length of a string $s is strlen($s)
The $i-th character of string $s is $s[$i]

7/28/2004 BGA 48

String operations (2)

Removing whitespace from strings
Trim whitespace at left end
$trimmed_string = ltrim($s);

Trim whitespace at right end
$trimmed_string = rtrim($s);

Trim whitespace at both ends
$trimmed_string = trim($s);

7/28/2004 BGA 49

String operations (3)

Converting $s to upper case or lower case
$upper = strtoupper($s);
$lower = strtolower($s);

Converting first character of $s to uppercase
$upper_first = ucfirst($s);

Converting first character of every word in
$s to uppercase
$upper_word = ucwords($s);

7/28/2004 BGA 50

HTML encoding

Special HTML characters such as <, > and &
have special entities (<, >, &)
so they can be used in HTML documents as
ordinary characters without special meaning.
The htmlspecialchars function can be
used to do this. For example
$s1 = "<p>";
$s2 = htmlspecialchars($s1);
$s2 has the value "<p>"

7/28/2004 BGA 51

Database encoding

SQL query strings and database fields need
to be encoded. The encodings can depend
on the particular database.
The standard encoding is to precede single
quotes, double quotes, NUL bytes and
backslashes by a backslash
The addslashes function performs the
encoding and the stripslashes function
performs the decoding.

7/28/2004 BGA 52

String comparison (1)

Can use the operators
<, <=, >, >=, ===, !==

Don't use == and !=. Unexpected results for
mixed comparisons of numbers and strings.
Can use === and !== to compare 2 strings

if ($str1 === $str2)
{

echo "Strings are equal";
}

7/28/2004 BGA 53

String comparisons (2)

To compare two strings as strings its best to
use the strcmp function (similar to C, Java)
strcmp($s1,$s2) returns

negative integer if $s1 precedes $s2
zero if $s1 and $s2 are the same
positive integer if $s1 follows $s2

There is also strcasecmp to do case
insensitive comparison
There are other comparison functions.

7/28/2004 BGA 54

Substrings, replacement

substr(string, start)
return substring of string beginning at index
start and continuing to end of the string

substr(string, start, length)
return substring of string beginning at index
start and consisting of length characters

There are also functions substr_replace,
strrev, str_repeat, str_pad

7/28/2004 BGA 55

Exploding a string

explode(separator, string)
extracts an array of substrings using the
characters in separator as field separators

Example

$fields is an array of the three strings
"123", "Jack Sprat", and "45.50"

$account = "123:Jack Sprat:45.50";

$fields = explode(":", $account);

7/28/2004 BGA 56

Imploding a string

implode(separator, array)
inverse of explode: makes a single string from
the strings in an array using separator string
between each string in the array

Example:

$account now contains the string
"123:Jack Sprat:45.50"

$fields = array("123", "Jack Sprat", 45.50;

$account = implode(":", $fields);

7/28/2004 BGA 57

Searching strings (1)

strpos(string, target)
return position of first occurrence of target string
in string. If target not found false is returned but
if target is found at position 0 then 0 is returned
and this would also be false, YUK. Therefore use
=== to check if string wasn't found.
$pos = strpos("string to search", "str");
if ($pos === false) {

// string wasn't found
} else {

// string was found at position $pos
}

7/28/2004 BGA 58

Searching strings (2)

Most other string searching functions are
bizarre and probably should never be used.
For example strrpos finds the last
occurrence of a character but won't find the
last occurrence of a multi-character string.
To find last occurrence use strrev and
strpos.

Forget these functions and use regular
expressions.

COSC 2206 Internet Tools

Regular Expressions in PHP

7/28/2004 BGA 60

Regular expressions (1)

Regular expressions provide a powerful way
to do pattern matching: finding one pattern
in another.
The simplest patterns are fixed strings like
those in the searching function strpos.
However patterns can represent complex
classes of strings.
Useful for validating strings

7/28/2004 BGA 61

Regular expressions (2)

ereg(pat, str)
returns true if match for pattern was found in
string.
ergi is the case insensitive version

ereg_replace(pat, replace, str)
Each occurrence of pattern match in string is
replaced by the replace string. Result is returned
as a new string
ergi_replace is the case insensitive version

7/28/2004 BGA 62

Regular expressions (3)

split(pattern, string)
splits string into substrings using pattern as the
delimiter. The substrings are returned as an
array.

7/28/2004 BGA 63

Simple Reg Exp Examples (1)

Matching strings containing only digits
$regexp = "^[0-9]+$";
ereg($regexp, "2342123") returns true
ereg($regexp, "2124sd") returns false

^ matches the beginning of the string
$ matches the end of the string
[0-9] specifies a range for a character
+ means 1 or more occurrences

7/28/2004 BGA 64

Simple Reg Exp Examples (2)

Matching phone numbers of the form
"ddd-ddd-dddd"
$regexp =

"^[0-9]{3}-[0-9]{3}-[0-9]{4}$";

Here the hyphen is a literal character and
{3} indicates exactly three occurrences of
the preceding character.

7/28/2004 BGA 65

Simple Reg Exp examples (3)

Match file names with php extension in
directories simple or forms, for example
simple/test.php or forms/temp.php

. represents any character so to get a literal . it
is necessary to use \.
(...|...) is alternation: simple 'or' test in this case

$regexp = "^(simple|forms)/[0-9a-zA-Z_]+\.php$";
$filename = "simple/test.php";
$valid = ereg($regexp, $filename);

7/28/2004 BGA 66

Perl Regular Expressions

There are PCRE (Perl Compatible Regular
Expressions) versions of these functions
preg_match(pattern, str)
preg_replace(pattern, replace, str)
preg_split(pattern, str)

Delimiters are needed in the pattern
e.g /.../

And a few variations:
preg_match_all, preg_grep

7/28/2004 BGA 67

Perl Reg Exp Example

Match names containing letters, hyphens
and apostrophe's
$regexp = '/^[a-zA-Z\-\']+$/';

Note the delimiters / ... / needed for Perl
Also note that - and ' are escaped since
they are special
Now to validate a name use
preg_match($regexp, $name)

COSC 2206 Internet Tools

Arrays in PHP

7/28/2004 BGA 69

Two types of arrays

Indexed arrays
the indices are 0, 1, 2,
these are like arrays in C, Java, or Perl

Associative arrays
indices are strings (keys)
these are similar to hashes in Perl or HashMap's
in Java

Any values can be stored in an array

7/28/2004 BGA 70

Creating indexed arrays

Creating and initializing an array
$a = array(10, 20, "Help");
$a[0] is 10, $a[1] is 20, $a[2] is "Help"

Extending the array dynamically
$a[] = 30; // this is $a[3]

Creating an array by autovivification
$b[0] = 10; $b[1] = 20;
$b[] = "Help"; // next element
$b[] = 30; // next element

7/28/2004 BGA 71

Indexed arrays from ranges

$digits = range(0,9);
$digits[0] is 0,
$digits[1] is 1, ...

$letters = range('a', 'z');
$letters[0] is 'a',
$letters[1] is 'b', ...

7/28/2004 BGA 72

Indexed array list operation

The list operation is quite useful for
making multiple assignments from an
indexed array

This only works for indexed arrays

$product = array(123, 'No-name PC', 450);

list($id, $description, $price) = $product

echo "<p>id = $id</p>";

echo "<p>description = $description</p>";

echo "<p>price = $price</p>";

7/28/2004 BGA 73

Indexed array slices

array_slice(array, offset,
length)

returns a subarray with length elements of array
begining at offset

Extracts $letters[5] to $letters[14]
as $slice[0] to $slice[9]

$letters = range('a', 'z');

$slice = array_slice($letters, 5, 10);

7/28/2004 BGA 74

Associative arrays

An associative array is a table of key-value
pairs. Here the names are the keys and the
values are the ages.
$age = array('Fred' => 37, 'Gord' => 23,

'Alice' => 17, 'Bob' => 23);

echo "Fred's age is ", $age['Fred'];

$age['Fred'] = 65; // Fred is now a senior

echo "
Fred's age is {$age['Fred']}";

Note braces
needed for

interpolation

7/28/2004 BGA 75

Associative arrays as records

An associative array can represent a record
in a database

$account = array('number' => 123,

'name' => 'Fred',

'balance' => 450.50);

echo "Account balance is ", $account['balance'];

$account['balance'] += 100; // deposit $100

echo "
New balance is {$account['balance']}";

7/28/2004 BGA 76

Associative arrays of arrays

The values can be anything

The values here are arrays each containing
the red, green blue components of a color

$colors = array('red' => array(255,0,0),
'green' => array(0,255,0),
'blue' => array(0,0,255),
'yellow' => array(255,255,0),
'brown' => array(128,64,0));

$yellow = $colors['yellow']; // yellow array
$red = $colors['yellow'][0]; // red part of yellow

7/28/2004 BGA 77

Associative array keys

array_keys(array)
extracts the keys of the given associative array
into an indexed array

Then $color_names[0] is 'red', ...,
$color_names[4] is 'brown'

$colors = ...

$color_names = array_keys($colors);

7/28/2004 BGA 78

Checking for key existence (1)

array_key_exists(key, array)
returns true if the given key exists in the array.
If the key exists it may or may not be null.

Here "key exists" is displayed (also see is_null)

$product = array('id' => 1, 'desc' => null,
'price' => 2.50);

if (array_key_exists('desc', $product))
{ echo 'key exists'; }
else
{ echo 'key does not exist'; }

7/28/2004 BGA 79

Checking for key existence (2)

isset(array['key'])
returns true if the given key exists in the array
and is not null

Here "key does not exist or is null" is displayed

$product = array('id' => 1, 'desc' => null,
'price' => 2.50);

if (isset($product['desc']))
{ echo 'key exists and is not null'; }
else
{ echo 'key does not exist or is null'; }

7/28/2004 BGA 80

array --> variables (extract)

The extract function converts an array to
variables

This creates the variables my_number,
my_name, my_balance with the values 123,
"Fred", and 45.50
There is an inverse function called compact

$account = array('number' => 123, 'name' => 'Fred',
'balance' => 45.50);

extract($account, EXTR_PREFIX_SAME, "my");

7/28/2004 BGA 81

Array copy function

In PHP array assignment is a copy operation
This is very different than Java where array
assignment simply makes a new reference to
the same array. To test this try

Gord's age is still 23 in the $age array.

$age_copy = $age;
$age_copy['Gord'] = 55;
var_dump($age);
var_dump($age_copy);

7/28/2004 BGA 82

searching arrays

in_array(element, array)
in_array(element, array,TRUE)

returns true if the given element is found in the
given array (TRUE option for same types)

array_search(element, array)
array_search(element, array,TRUE)

returns the key of the element if found, else
returns false (TRUE option for same types)

7/28/2004 BGA 83

Sorting arrays (1)

sort(array), rsort(array)
sort array in ascending alphabetical or numerical
order or reverse alphabetical or numerical order

$names = array('Fred', 'Ted', 'Barney', 'Gord');

sort($names); // 'Barney','Fred','Gord','Ted'

print_r($names);

rsort($names); // 'Ted','Gord','Fred','Barney'

print_r($names);

7/28/2004 BGA 84

Sorting arrays (2)

asort(array), arsort(array)
sort associative array by values in ascending or
descending order

The order is increasing order of age

$ages = array('Fred' => 34, 'Ted' => 45,

'Barney' => 23, 'Gord' => 15);

asort($ages); // 'Gord','Barney,'Fred','Ted'

print_r($ages);

7/28/2004 BGA 85

Sorting arrays (3)

ksort(array), krsort(array)
sort associative array by keys in ascending or
descending order

The order is ascending alphabetical order of the
names

$ages = array('Fred' => 34, 'Ted' => 45,

'Barney' => 23, 'Gord' => 15);

ksort($ages); // 'Barney','Fred','Gord','Ted'

print_r($ages);

7/28/2004 BGA 86

Other array functions

There are many other array functions
reversing arrays
sorting multiple arrays
user-defined sorting
array_walk, and array_reduce
merging two arrays
array filtering
set operations (union, merge, unique)
stack operations (push, pop, shift, unshift)

7/28/2004 BGA 87

The for loop

Similar to C and Java:

for ($count = 1; $count <= 10; $count++)
{

echo "$count ";
}

$ages = array(34, 45, 56, 65);

for ($k = 0; $k < count($ages); $k++)
{

echo $age[$k], ' ';
}

7/28/2004 BGA 88

The foreach loop (1)

Useful for indexed arrays when the loop
index is not needed as in preceding
example:

Here $age successively takes on the array
values
INEFFICIENTINEFFICIENT: foreach makes a copy of array

$ages = array(34, 45, 56, 65);

foreach ($ages as $age)
{

echo $age, ' ';
}

7/28/2004 BGA 89

The foreach loop (2)

Useful for processing associative arrays

$key and $value are successively the keys and
values in the $product array

$product = array('id' => 23,
'desc' => 'No-name PC', 'price' => 549.99);

foreach ($product as $key => $value)
{

echo "Key = $key, Value = $value
";
}

7/28/2004 BGA 90

The while loop

Similar to C and Java.
Can also be used with iterator functions:

More efficient than foreach since a copy of the
array is not made (see next slide)

$product = array('id' => 23,
'desc' => 'No-name PC', 'price' => 549.99);

while (list($key,$value)= each($product))
{

echo "Key = $key, Value = $value
";
}

7/28/2004 BGA 91

How each works

For the array

each($product) initially returns the
associative array
array(0 => 'id', 1 => 23,

'key' => 'id', 'value' => 23);

This array can be used either as an indexed
or an associative array.

$product = array('id' => 23,
'desc' => 'No-name PC', 'price' => 549.99);

7/28/2004 BGA 92

Loop iterator functions

The loop iterator functions for arrays
current(array)
reset(array)
next(array)
prev(array)
end(array)
each(array)
key(array)

7/28/2004 BGA 93

do while loop

Similar to C and Java

do
{

Statements

} while (condition)

7/28/2004 BGA 94

User-defined functions

User defined functions have the form

function name(arg_list)
{

Statements

}

7/28/2004 BGA 95

Variable scope

Variable scoping is very simple in PHP
Variables defined inside functions are local
Variables defined outside functions are
global variables not available inside a
function unless declared as global inside a
function using the global statement
There are a few predefined superglobal
variables available anywhere

7/28/2004 BGA 96

Variable scope example

Assume that $name is defined outside any
function.
function one()
{

// global $name not available here
}

TIP
Don't Use

Global
Variables

function two()
{

global $name;
// global $name is available here

}

7/28/2004 BGA 97

static variables

Static variables are local to a function but
initialized only once, when the function is
called the first time
function counter()
{

static $count_value = 0;
return $count_value++;

}

echo counter(); // displays 0
echo counter(); // displays 1

7/28/2004 BGA 98

A max function

Return the max of two numeric values

function max2($a, $b)
{

if ($a > $b) return $a;

return $b;
}

echo "max of 2 and 3 is ",max2(2,3);

7/28/2004 BGA 99

Pass by value

Multiply each element of an array by 2
function times2($a)
{

for ($k = 0; $k < count($a); $k++)
{

$a[$k] = 2 * $a[$k];
}
return $a;

}

This
version
makes a
copy of

the array

$a = array(1,2,3,4,5);
$b = times2($a);
echo var_export($a),"
"; // 1,2,3,4,5
echo var_export($b),"
"; // 2,4,6,8,10

7/28/2004 BGA 100

Pass by reference

Multiply each element of an array by 2
function times2_ref(&$a)
{

for ($k = 0; $k < count($a); $k++)
{

$a[$k] = 2 * $a[$k];
}

}

Pass
by

reference

$a = array(1,2,3,4,5);
echo var_export($a),"
"; // 1,2,3,4,5
times2_ref($a);
echo var_export($a),"
"; // 2,4,6,8,10

7/28/2004 BGA 101

Variable number of args

Find max of several numbers

function maxn()
{

$max_value = func_get_arg(0);
for ($k = 1; $k < func_num_args(); $k++)
{

if (func_get_arg($k) > $max_value)
{

$max_value = func_get_arg($k);
}

}
return $max_value;

}

7/28/2004 BGA 102

Including files (1)

A file can be included in another file using
include and require
include, include_once

inherits the scope of the include point
parsing is in HTML mode so code must use the
php tags <?php ... ?>

require, require_once
like include but causes fatal error if file doesn't
exist

7/28/2004 BGA 103

Including files (2)

PHP searches for include files in the paths
specified in the php.ini file
For example in windows you could use
include_path =
".;c:\php;c:\Apache\php-includes"

Then the search is in the current directory
(the dot) and if not found there then in the
directories c:\php and c:\Apache\php-
includes

7/28/2004 BGA 104

Classes and objects

PHP has object oriented features:
classes
objects
constructors
methods
inheritance

Does not support data encapasulation
however since data fields are always public

7/28/2004 BGA 105

Writing lines to a file

First open the file for writing:
$out_file = fopen("test.dat", "w");

Write some data to the file
fwrite($out_file, "Line 1\n");
fwrite($out_file, "Line 2\n");

Close the file when finished
fclose($out_file);

For appending use "a" instead of "w"

also fputs

7/28/2004 BGA 106

Reading lines from a file

First open the file for reading:
$in_file = fopen("test.dat", "r");

Use a loop to read and display lines
while (! feof($in_file))
{ $line = fgets($in_file, 100);

echo $line, "
";
}

Close the file when finished
fclose($in_file);

At most 99
characters

per line

7/28/2004 BGA 107

Other file operations (1)

fgetss(fp, length)
like fgets but strips out PHP and HTML tags

fgetcsv(fp, length, delimiter)
like fgets but returns array of strings using
delimiter as separation character

fread(fp, length)
read length bytes using file pointer fp

fgetc(fp)
reads a single character and returns it

7/28/2004 BGA 108

Other file operations (2)

readfile(filename)
reads an entire file and echoes it to standard
output (browser). returns number of bytes read

file(fp)
reads entire file as lines into an array which is
returned

file_exists(filename)
returns true if the specified file exists

7/28/2004 BGA 109

Other file operations (3)

unlink(filename)
delete the specified file. Returns true if the file
was deleted.

filesize(filename)
returns length in bytes of specified file

There are file operations such as rewind,
fseek, and ftell to support direct access
file locking is supported with flock

7/28/2004 BGA 110

File Based Page Hit Counter

It is easy in PHP to make a simple page hit
counter.
Use a file that contains one number, the
number of times the page has been
accessed.
Update this count and display it each time
the page is accessed
view script lang/counter_test.php
http://localhost/php/lang/counter_test.php

http://localhost/php/lang/counter_test.php

7/28/2004 BGA 111

counter_test.php

<?php include("counter.php"); ?>
<html>
<head>
<title>Testing the counter</title>
</head>
<body>
<h1>Testing the counter</h1>
This page has been visited
<?php echo counter("counter") ?> times.
</body>
</html>

7/28/2004 BGA 112

counter.php (1)

<?php
// Function returns counter value with given count
// file name (without extension)
function counter($file_name)
{

$count = 0;
if (file_exists($file_name . ".dat")) {

$counter_file = fopen($file_name . ".dat", "r");
$count = fgets($counter_file, 100);
fclose($counter_file);

}
$count++;

7/28/2004 BGA 113

counter.php (2)

// write the new value to the file using exclusive
// lock

$fp = get_lock($file_name);
$counter_file = fopen($file_name . ".dat", "w");
fputs($counter_file, $count);
fclose($counter_file);
release_lock($fp);
return $count;

}

7/28/2004 BGA 114

counter.php (3)

function get_lock($semaphore_file_name)
{

$fp = fopen($semaphore_file_name . ".sem", "w");
flock($fp, 2);
return $fp;

}

function release_lock($fp)
{

flock($fp, 3);
fclose($fp);

}

view script simple/counter.php

7/28/2004 BGA 115

Example scripts

The following example scripts illustrate the
PHP language
A better way to show them is to use the link
http://localhost/php/ which shows both the
source and the output in side by side frames

http://localhost/php/
http://localhost/php/

7/28/2004 BGA 116

Example scripts (1)

http://localhost/php/lang/scalars.php
view source

http://localhost/php/lang/display.php
view source

http://localhost/php/lang/strings1.php
view source

http://localhost/php/lang/strings2.php
view source

http://localhost/php/lang/scalars.php
http://localhost/php/lang/scalars.php
http://localhost/php/lang/display.php
http://localhost/php/lang/display.php
http://localhost/php/lang/strings1.php
http://localhost/php/lang/strings2.php

7/28/2004 BGA 117

Example scripts (2)

http://localhost/php/lang/strings3.php
view source

http://localhost/php/lang/arithmetic.php
view source

http://localhost/php/lang/math.php
view source

http://localhost/php/lang/arrays1.php
view source

http://localhost/php/lang/strings3.php
http://localhost/php/lang/strings3.php
http://localhost/php/lang/arithmetic.php
http://localhost/php/lang/arithmetic.php
http://localhost/php/lang/math.php
http://localhost/php/lang/arrays1.php

7/28/2004 BGA 118

Example scripts (3)

http://localhost/php/lang/arrays2.php
view source

http://localhost/php/lang/arrays3.php
view source

http://localhost/php/lang/arrays4.php
view source

http://localhost/php/lang/sort.php
view source

http://localhost/php/lang/arrays2.php
http://localhost/php/lang/arrays2.php
http://localhost/php/lang/arrays3.php
http://localhost/php/lang/arrays3.php
http://localhost/php/lang/arrays4.php
http://localhost/php/lang/sort.php

7/28/2004 BGA 119

Example scripts (4)

http://localhost/php/lang/testing.php
view source

http://localhost/php/lang/comparison.php
view source

http://localhost/php/lang/regexp1.php
view source

http://localhost/php/lang/scoping.php
view source

http://localhost/php/lang/testing.php
http://localhost/php/lang/testing.php
http://localhost/php/lang/comparison.php
http://localhost/php/lang/comparison.php
http://localhost/php/lang/regexp1.php
http://localhost/php/lang/scoping.php

7/28/2004 BGA 120

Example scripts (5)

http://localhost/php/lang/loops.php
view source

http://localhost/php/lang/functions1.php
view source

http://localhost/php/lang/trigtable.php
view source

http://localhost/php/lang/write.php
view source

http://localhost/php/lang/loops.php
http://localhost/php/lang/loops.php
http://localhost/php/lang/functions1.php
http://localhost/php/lang/functions1.php
http://localhost/php/lang/trigtable.php
http://localhost/php/lang/write.php

7/28/2004 BGA 121

Example scripts (6)

http://localhost/php/lang/read.php
view source

http://localhost/php/lang/append.php
view source

http://localhost/php/lang/counter_test.php
view source (counter_test.php)
view source (counter.php)

http://localhost/php/lang/read.php
http://localhost/php/lang/read.php
http://localhost/php/lang/append.php
http://localhost/php/lang/append.php
http://localhost/php/lang/counter_test.php

	COSC 2206 Internet Tools
	Introduction to PHP
	PHP Timeline
	Important PHP Features (1)
	Important PHP Features (2)
	Important PHP features (3)
	Version incompatibilities
	COSC 2206 Internet Tools
	Installing PHP for Win XP
	Getting PHP
	Getting PHP documentation
	php.ini configuration file
	Editing php.ini (1)
	Editing php.ini (2)
	Editing php.ini (3)
	Configuring Apache (1)
	Configuring Apache (2)
	Configuring Apache (3)
	PHP-Apache Integration
	Testing PHP
	Language Summary
	Where does PHP code go?
	8 Data Types
	Declaring Variables
	Naming conventions
	Constants
	Case sensitivity
	Three kinds of comments
	Literals and Strings
	Variable Interpolation (1)
	Variable Interpolation (2)
	Displaying strings (1)
	Displaying strings (2)
	Type casting
	Arithmetic
	What is false in PHP?
	Relational Operators
	Comparison operators
	Comparison of == and ===
	Conditional statements
	Testing variables
	empty / isset (from manual)
	Math functions (1)
	Math functions (2)
	COSC 2206 Internet Tools
	String interpolation
	String operations (1)
	String operations (2)
	String operations (3)
	HTML encoding
	Database encoding
	String comparison (1)
	String comparisons (2)
	Substrings, replacement
	Exploding a string
	Imploding a string
	Searching strings (1)
	Searching strings (2)
	COSC 2206 Internet Tools
	Regular expressions (1)
	Regular expressions (2)
	Regular expressions (3)
	Simple Reg Exp Examples (1)
	Simple Reg Exp Examples (2)
	Simple Reg Exp examples (3)
	Perl Regular Expressions
	Perl Reg Exp Example
	COSC 2206 Internet Tools
	Two types of arrays
	Creating indexed arrays
	Indexed arrays from ranges
	Indexed array list operation
	Indexed array slices
	Associative arrays
	Associative arrays as records
	Associative arrays of arrays
	Associative array keys
	Checking for key existence (1)
	Checking for key existence (2)
	array --> variables (extract)
	Array copy function
	searching arrays
	Sorting arrays (1)
	Sorting arrays (2)
	Sorting arrays (3)
	Other array functions
	The for loop
	The foreach loop (1)
	The foreach loop (2)
	The while loop
	How each works
	Loop iterator functions
	do while loop
	User-defined functions
	Variable scope
	Variable scope example
	static variables
	A max function
	Pass by value
	Pass by reference
	Variable number of args
	Including files (1)
	Including files (2)
	Classes and objects
	Writing lines to a file
	Reading lines from a file
	Other file operations (1)
	Other file operations (2)
	Other file operations (3)
	File Based Page Hit Counter
	counter_test.php
	counter.php (1)
	counter.php (2)
	counter.php (3)
	Example scripts
	Example scripts (1)
	Example scripts (2)
	Example scripts (3)
	Example scripts (4)
	Example scripts (5)
	Example scripts (6)

