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i PHP Timeline

= Rasmus Lerdorf's Personal Home Page tools,
1994

= Later recursively renamed to PHP Hypertext
Processor

= PHP 1.0, June 1995
= PHP 2.0, April 1996
= PHP 3.0, June 1998
= We are using version 4.3.7 (June 2003)
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i Important PHP Features (1)

= Designed from beginning as a server-side
web scripting language.
= Runs on all major operating systems.

= Built-in support for several relational
databases such as MySQL

= Built-in support for session management
using cookies and / or URL rewriting.

= Can also be used for command-line scripting
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i Important PHP Features (2)

= Interpreted language

= Loosely typed language

= a variable can hold a value of any type at
different stages in its lifetime

= Hybrid language

= Ccan be used in a non object-oriented style or an
object-oriented style or a mixture of both.

= Currently the most popular web scripting
language
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i Important PHP features (3)

= Can be configured as a CGI process
= This is inefficient.

= @ Separate process is needed for each
connection to the web server.

= Can be configured as an Apache module
= This is efficient.

= one instance of the PHP interpreter remains
running as long as the web server is running.
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i Version incompatibilities

= [he latest versions 4.1 and above are

not compatible with earlier versions if @
register globals Is set to off
(now the default in the php . ini file).

= It is highly recommended to leave it off for security
reasons. We will assume this.

= This means that values in certain global arrays are
no longer mapped to variables in PHP.

= More on this when we do web apps in PHP
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i Installing PHP for Win XP

= Here we give only a brief description of
installation

= More complete details are available on the
course CD-ROM or online at

http://www.cs.laurentian.ca/badams/c2206/install-notes/php/
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i Getting PHP

= Go to www.php.net to get the software.
=« It's also on the CD-ROM (version 4.3.7)

s For windows it should have a name like
php-4.3.7-Win32.zip

= Unzip it into your top level ¢: \ directory

= This gives a directory called
c:\php-4.3.7-Win32

= Rename this directory to just c¢: \php
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i Getting PHP documentation

= The documentation is an 1800 page manual
and it is necessary to have it.

s It comes in several formats but the best for
Windows is the help file format

= [0 get this format download the file
php manual chm 12.zip

= Unzip it in your ¢: \php\docs directory and
put a shortcut to it on your start menu

= It is also available on the CD
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i php.ini configuration file

= In the directory c: \php you will find a

default configuration file called
php.1i1ni-recommended

= Copy it to your windows directory

= ¢:\windows
= Rename the copy to just php.ini
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i Editing php.ini (1)

= Make the following changes to php. ini
= locate doc root =
= Change to doc_root = "c:\Apache\htdocs"
= locate display errors = Off
= change t0 display errors = On
(for learning PHP)

= We assume that Apache is installed directory
c: \Apache
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i Editing php.ini (2)

= Make the following changes to php. ini

= Uncomment the lines
= ;extension=php gd2.dll
;extension=php pdf.dll

= Replace the line
= extension dir

-extension_dir

" / A

"c:\php\extensions"
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i Editing php.ini (3)

= Make the following changes to php. ini

= Replace the line
= session save path = "/tmp"

= with (make directory sessions)
= session_save path = "c:\Apache\sessions"

= Change the line for Windows
= ;include path = ".;c:\php\includes"

to (make directory php-includes)

= include path = ".;c:\php;c:\Apache\php-
includes"
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i Configuring Apache (1)

= To configure PHP as an Apache module
locate the file ¢: \php\php4ts.dll

= Copy it to

» ¢:\windows\system32

= Now it is necessary to configure apache as a
module (built-in to Apache)
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i Configuring Apache (2)

= Edit c:\apache\conf\httpd.conf and

add the following LoadModule statement
» LoadModule php4_module c:/php/sapi/php4apache.dll

s Locate the section of the file with the
AddModule statements and add the two lines
» AddModule mod_php4.c

» AddType application/x-httpd-php .php
» AddType application/x-httpd-php-source .phps

= This tells apache to treat files with the php
extension as executable by PHP
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i Configuring Apache (3)

= Restart or start Apache so that the

modifications to httpd. conf will be read.

= In the command window you should see
» Apache/1.3.29 (Win32) PHP/4.3.7 running

= This indicates that PHP has been properly
installed as an Apache module
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& PHP-Apache Integration

Send page

PHP Module

ﬁ
Request

page
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i Testing PHP

= Create the following hello.php script

<html>
<head><title>Hello Script</title></head>
<body>
<?php echo "<hl>Hello PHP World'!</hl>" ?>
</body>
</html>

= Put it in c: \apache\htdocs\testphp

= Try the URL
= http://localhost/testphp/hello.php
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i Where does PHP code go?

= PHP code can be standalone (like Perl) or
embedded in HTML code (like ASP)

= PHP script tags are used to distinguish PHP

code from HTML code:
<?php w

PHP code goes here

7> End PHP mode

= These tags are XML compliant and should
always be used for fully portable PHP code
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i 8 Data Types

= 4 are scalar types
= integer, floating point (double),
= String,
= boolean

= 2 are structured types
= array and object

= 2 are special types
= resource, NULL
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i Declaring Variables

= Variable types are not declared
= Type is type of value currently assigned

= All variables begin with a dollar sign
= next character is a letter or underscore
= Ffemaining are letters, underscore or digits

Scount = 0;

Sname = "Fred";

Sprice = 45.50; /r case ]
Insensitive

$big num 1.23455225;/////«\

TRUE ;

7/28/2004 BGA
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i Naming conventions

= The convention in PHP (coming from C) is
that the underscore character is used to
simulate a space in variable names:

= Example:
» Snumber of files = 3;

= This is different from the uppercase
convention that is used in Java
» numberOfFiles = 3;
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i Constants

= Constants are defined using the define
function and do not begin with a dollar sign

= The convention is to use all uppercase
letters and _ for names of constants

= Examples:
define ('COURSE', "Internet Tools");

define('CM TO INCH', 2.54);
= NOw use COURSE and CM_TO INCH to refer
to these constants
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i Case sensitivity

= PHP is a weird mixture of case sensitivity
and case insensitivity

= variable and constant names are case
sensitive

= boolean values TRUE and FALSE are not
case sensitive.

s function names are not case sensitive
= Maybe they will fix this in a future version
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i Three kinds of comments

= C, Java style multi-line comments
/* This is a multi-line
comment
*/
= C++, Java single line comments

// a single line comment

= Unix shell script and Perl comments
# a single line comment
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i Literals and Strings

= Integer literals
=-1, 1, 2, 3

= Floating point literals
=1.234, -4.56, 1.34E-12

= There are two kinds of string literal
= Single quotes: 'hello'
= double quotes: "hello™

= | here are two boolean literals
=« TRUE, FALSE
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i Variable Interpolation (1)

= Interpolation takes place inside doubly
quoted strings.

= This means that variables are replaced by

their values and special control sequences
such as \n take effect.

= Interpolation does not take place inside
singly quoted strings so \n is just two

characters
= This is similar to interpolation in Perl.
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i Variable Interpolation (2)

s If Sname has the value "Fred" then

» "Hello S$name" has the value
Hello Fred

s 'Hello S$name' has the value
Hello S$name

s "\Sname = S$name" has the value
Sname = Fred

= In the last case the escape character \ is
used to specify that the first $ is a literal

character.
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31



i Displaying strings (1)

= The print function displays text on the
standard output.
» print ("Hello $name\n");

= The echo function is similar but parentheses

are not needed and several arguments can
be supplied

= echo "Hello ", S$name, "\n";
= There is also a C-style print£ function that
produces formatted output.
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i Displaying strings (2)

m print r(expression)

= function which displays a string representation
of a variable such as an array.

m var dump (expression)
= Similar output as print r
m var export (expression)

= returns a string representation of a variable. Can
be used in a print statement (like toString in
Java)
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i Type casting

= The type of a variable can be changed using
the typecasting operators
= (1nt) Or (integer)
= (float) Or (double) Or (real)
s (bool) Or (boolean)
= (string) Or ". .. ... "
= (array)
= (object)
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i Arithmetic

= The usual operators are +, -, *, and /
= Note that / is always a floating point divide
= For integer divide use (int) ($a/$b)

= The remainder (mod) operator is % so if $a
and $b have integer values then $a % $bis
the remainder when $a is divided by $b.

= The ++ and -- operators are available
= Also we have +=, -=, *= and so on
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i What is false in PHP?

= In the conversion to boolean only the
following are considered to be false.

s
s
s

ne boolean value FALSE
ne integer 0
ne floating point number 0.0

s

ne empty string "" and the string "0"

= an array with no elements (like array ())

= an object with no elements
= the special value NULL, and an unset variable

7/28/2004

BGA

36



i Relational Operators

= PHP has the usual C and Java style operators
s || for logical or
« &§&  for logical and
" for negation

= There are also different precedence versions
= or forlogical or
« and for logical and
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i Comparison operators

= PHP has the usual C and Java style operators
1 <, <=, ==, 1=, >, >=

= These operators perform type conversions if
necessary before the comparison

= There are also the operators
n ===, and '==

= These operators compare value and type so
no type conversion is done

= These operators are also used for strings
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i Comparison of == and ===

= Suppose $a has the value "0" as a string
= Suppose $b has the value 0 as an integer

= Then

= Sa == $b is true since both "0" and 0 evaluate
to false but
= Sa === $b is false since $a and $b have

different types
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i Conditional statements

= The if statement is similar to C and Java
except elseif can be used instead of

else 1f >>

7/28/2004

if ( booleanExpressiont)
{

}
elseif ( booleanExpression2 )
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i Testing variables

» empty (variable)

= returns true if variable is set and has an empty
value (for example, 0, ' ).

m isset (variable)

= returns true if the variable exists
= alsO see unset

= is null (variable)

= returns true if an existing variable has the null
value
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empty / isset (from manual)

<?php
Svar = 0;

// Evaluates to true because $var is empty

if (empty($var))

echo '$var is either 0, empty, or not set at all';

// Evaluates as true because $var is set
if (isset($wvar))

echo '$var is set even though it is empty';

?>

7/28/2004 BGA
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i Math functions (1)

= There are many math constants in PHP. For
example 7 isM PI and v2 isM SQRT2

s Example:

Sradius = 1.0;
$circ = 2.0 * M PI * Sradius;
$area = M PI * Sradius * $radius;

echo "Circumference is S$circ\n";

echo "Area is Sarea\n";
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i Math functions (2)

= There are many math functions in PHP:
= abs sqrt
= S1n cos tan
= asin acos atan atan2
m exp expml log logpl
= rand round
= min max
= POW

= and many more
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i String interpolation

= Single or double quotes as delimiters

= Variables are not interpolated in singly
quoted strings.

= T0 include a single quote it is necessary to
use \' and to include a backslash use \\

= Variables are interpolated in doubly quoted
strings and escape sequences such as \ ",

\n, \\, \$, \t, \{, \}, \[, \]
can be used.
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i String operations (1)

= The dot operator is used to concatenate
strings
= "Hello " . "World" is the same as
"Hello World"

= echo, print, printf, print r,
var dump functions display strings on
standard output

= The length of a string $s is strlen ($s)
= The $i-th character of string $s is $s[$i]
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i String operations (2)

= Removing whitespace from strings
= Trim whitespace at left end

» Strimmed string = ltrim(Ss);
= Trim whitespace at right end

» Strimmed string = rtrim(Ss);

= [rim whitespace at both ends
» Strimmed string = trim($s);
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i String operations (3)

= Converting $s to upper case or lower case
s Supper = strtoupper (Ss);
» Slower = strtolower ($s) ;
= Converting first character of $s to uppercase

» Supper first = ucfirst($s);

= Converting first character of every word in
$s to uppercase

» Supper word = ucwords ($s) ;
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i HTML encoding

= Special HTML characters such as <, > and &
have special entities (&1t ;, &gt ;, &amp;)
so they can be used in HTML documents as
ordinary characters without special meaning.
The htmlspecialchars function can be
used to do this. For example

= $s1 = "<p>";

s $s2 = htmlspecialchars (Ssl);

= $s2 has the value "&lt;p&gt; "
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i Database encoding

= SQL query strings and database fields need
to be encoded. The encodings can depend
on the particular database.

= The standard encoding is to precede single
quotes, double quotes, NUL bytes and
backslashes by a backslash

= The addslashes function performs the
encoding and the stripslashes function

performs the decoding.

7/28/2004 BGA
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i String comparison (1)

= Can use the operators
u <, <=, >, >=, === ==

= Don't use == and '=. Unexpected results for
mixed comparisons of numbers and strings.

= Can use === and !== to compare 2 strings

if (Sstrl === S$str2)
{

echo "Strings are equal";

}
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i String comparisons (2)

= T0 compare two strings as strings its best to
use the stremp function (similar to C, Java)

= stremp ($s1,$s2) returns
= Negative integer if $s1 precedes $s2
= zero if $s1 and $s2 are the same
= positive integer if $s1 follows $s2

= There is also strcasecmp to do case
iInsensitive comparison

= There are other comparison functions.
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i Substrings, replacement

m substr (string, start)

= return substring of string beginning at index
start and continuing to end of the string

m substr (string, start, length)

= return substring of string beginning at index
start and consisting of length characters

= There are also functions substr replace,
strrev, str repeat, str pad
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i Exploding a string

m explode (separator, string)

= extracts an array of substrings using the
characters in separator as field separators

= Example

Saccount = "123:Jack Sprat:45.50";

Sfields = explode(":", $account);

s $fields is an array of the three strings
"123", "Jack Sprat”, and "45.50"
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i Imploding a string

s 1implode (separator, array)

= inverse of explode: makes a single string from
the strings in an array using separator string
between each string in the array

= Example:

Sfields = array("123", "Jack Sprat", 45.50;

Saccount = implode(":", $fields);

s Saccount how contains the string
"l23:Jack Sprat:45.50"
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i Searching strings (1)

s strpos (string, target)

= return position of first occurrence of target string
in string. If target not found false is returned but
if target is found at position 0 then 0 is returned
and this would also be false, YUK. Therefore use
=== to check if string wasn't found.

Spos = strpos("string to search", "str");
if (Spos === false) {
// string wasn't found
} else {
// string was found at position $pos
}
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i Searching strings (2)

s Most other string searching functions are
bizarre and probably should never be used.
= For example strrpos finds the last

occurrence of a character but won't find the

last occurrence of a multi-character string.
To find last occurrence use strrev and

strpos.

= Forget these functions and use regular
expressions.
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i Regular expressions (1)

= Regular expressions provide a powerful way
to do pattern matching: finding one pattern
in another.

= The simplest patterns are fixed strings like
those in the searching function strpos.

= However patterns can represent complex
classes of strings.

= Useful for validating strings
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i Regular expressions (2)

m ereg(pat, str)

» returns true if match for pattern was found in
string.
» ergi iS the case insensitive version
m ereg replace(pat, replace, str)

= Each occurrence of pattern match in string is
replaced by the replace string. Result is returned
as a new string

= ergi replace is the case insensitive version
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i Regular expressions (3)

m split(pattern, string)

= splits string into substrings using pattern as the
delimiter. The substrings are returned as an
array.
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i Simple Reg Exp Examples (1)

= Matching strings containing only digits
s Sregexp = "A[0-9]+$";
s ereg(Sregexp, "2342123") returns true
= ereg (Sregexp, "2124sd") returns false

= ~ matches the beginning of the string

= $ matches the end of the string

= [0-9] specifies a range for a character
= + means 1 or more occurrences
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i Simple Reg Exp Examples (2)

= Matching phone numbers of the form
"ddd-ddd-dddd"

m Sregexp =
"A[0-9]{3}-[0-9]{3}-[0-9]1{4}$";

= Here the hyphen is a literal character and
{3} indicates exactly three occurrences of
the preceding character.
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i Simple Reg Exp examples (3)

= Match file names with php extension in

directories simple or forms, for example
simple/test.php Or forms/temp.php

$regexp = "*(simple|forms)/[0-9a-zA-Z ]+\.phpS";
Sfilename = "simple/test.php";
Svalid = ereg($Sregexp, $filename) ;

= . represents any character so to get a literal . it
IS hecessary to use \.

= (...]...) is alternation: simple 'or' test in this case
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i Perl Regular Expressions

= There are PCRE (Perl Compatible Regular
Expressions) versions of these functions
= preg match(pattern, str)
» preg replace(pattern, replace, str)
» preg split(pattern, str)

= Delimiters are needed in the pattern

=eqg /.../
= And a few variations:
» preg match all, preg grep
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i Perl Reg Exp Example

= Match names containing letters, hyphens
and apostrophe's
s Sregexp = '/*[a-zA-Z\-\"']+$/"';

= Note the delimiters / ... / needed for Perl

= Also note that - and ' are escaped since
they are special

= Now to validate a name use
» preg match ($regexp, S$name)
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i Two types of arrays

= Indexed arrays

« the indices are 0, 1, 2, ....

« these are like arrays in C, Java, or Perl
= Associative arrays

= indices are strings (keys)

= these are similar to hashes in Perl or HashMap's
In Java

= Any values can be stored in an array
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i Creating indexed arrays

= Creating and initializing an array

= $a = array (10, 20, "Help");

= $a[0] is 10, $a[1] is 20, $a[2] iS "Help"
= Extending the array dynamically

» Sa[] = 30; // this is $a[3]
= Creating an array by autovivification

= $b[0] = 10; $b[1l] = 20;

s Sb[] = "Help"; // next element

» Sb[] = 30; // next element

7/28/2004 BGA 70



i Indexed arrays from ranges

» Sdigits = range(0,9);
= Sdigits[0] is O,
= Sdigits[1l] is 1, ...

m $letters = range('a', 'z');

= $letters[0] IS 'a',
= $letters[1l] IS 'b', ...
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i Indexed array list operation

= The 1ist operation is quite useful for
making multiple assignments from an
indexed array

Sproduct = array (123, 'No-name PC', 450);
list ($id, $description, S$price) = S$product
echo "<p>id = $id</p>";

echo "<p>description = $description</p>";

echo "<p>price = $price</p>";

= This only works for indexed arrays
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i Indexed array slices

m array slice(array, offset,
length)

= returns a subarray with length elements of array
begining at offset

$letters = range('a', 'z');

$slice = array slice($Sletters, 5, 10);

s Extracts Sletters[5] tO Sletters[14]
as $Sslice[0] to $Sslice[9]
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i Associative arrays

= An associative array is a table of key-value
pairs. Here the names are the keys and the
values are the ages.

Sage = array( 'Fred' => 37, 'Gord' => 23,
'"Alice' => 17, 'Bob' => 23 );
echo "Fred's age is ", $age['Fred'];

Sage['Fred'] = 65; // Fred is now a senior

echo "<br>Fred's age is {$age['Fred']}";

Note braces
needed for
interpolation
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i Associative arrays as records

= An associative array can represent a record
in @ database

Saccount = array( 'number' => 123,
'name' => 'Fred',
'balance' => 450.50 ) ;
echo "Account balance is ", $account['balance'];

Saccount['balance'] += 100; // deposit $100

echo "<br>New balance is {$account['balance’']}";
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i Associative arrays of arrays

= The values can be anything

Scolors = array( 'red' => array(255,0,0),
'green' => array(0,255,0),
'blue' => array(0,0,255),
'yellow' => array(255,255,0),
'brown' => array(128,64,0) );
Syellow = $colors['yellow']; // yellow array
Sred = $colors['yellow'][0]; // red part of yellow

= The values here are arrays each containing
the red, green blue components of a color
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i Associative array keys

m array keys (array)

» extracts the keys of the given associative array
into an indexed array

Scolors = ...

$color names = array keys(Scolors);

= Then $color names[0] iS 'red’, ...,
$color names[4] iS 'brown'
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i Checking for key existence (1)

m array key exists(key, array)

= returns true if the given key exists in the array.
If the key exists it may or may not be null.

Sproduct = array('id' => 1, 'desc' => null,
'price' => 2.50);

if (array key exists('desc', S$product))

{ echo 'key exists'; }
else
{ echo 'key does not exist'; }

= Here "key exists" is displayed (also see is_null)
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i Checking for key existence (2)

m isset (array|['key'])

= returns true if the given key exists in the array

and is not null

{ echo
else
{ echo

'price' => 2.50);

if (isset($product['desc']))

'key exists and is not null'; }

'key does not exist or 1is null';

Sproduct = array('id' => 1, 'desc' => null,

}

= Here "key does not exist or is null" is displayed

7/28/2004
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i array --> variables (extract)

= The extract function converts an array to
variables

Saccount = array('number' => 123, 'name' => 'Fred',
'balance' => 45.50);
extract (Saccount, EXTR PREFIX SAME, "my");

= This creates the variables my number,
my name, my balance with the values 123,
"Fred", and 45.50

= There is an inverse function called compact
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i Array copy function

= In PHP array assignment is a copy operation

= This is very different than Java where array
assignment simply makes a new reference to

the same array. To test this try

$age copy = $age;

$age copy['Gord'] = 55;
var dump ($age) ;

var dump ($age_copy) ;

= Gord's age is still 23 in the $age array.
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i searching arrays

= in array(element, array)
in array(element, array,TRUE)

= returns true if the given element is found in the
given array (TRUE option for same types)

m array search(element, array)
array search(element, array,TRUE)

= returns the key of the element if found, else
returns false (TRUE option for same types)
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i Sorting arrays (1)

s sort (array), rsort (array)

= sort array in ascending alphabetical or numerical
order or reverse alphabetical or numerical order

Snames = array('Fred', 'Ted', 'Barney', 'Gord');

sort(Snames); // 'Barney', 'Fred', 'Gord', 'Ted'’

print r(Snames);

rsort($Snames); // 'Ted',6 'Gord', 'Fred', 'Barney'’

print r(Snames);
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i Sorting arrays (2)

m asort (array), arsort (array)

= Sort associative array by values in ascending or
descending order

Sages = array('Fred' => 34, 'Ted' => 45,
'Barney' => 23, 'Gord' => 15);
asort($ages); // 'Gord', 'Barney, 'Fred', 'Ted’

print r(Sages);

= The order is increasing order of age
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i Sorting arrays (3)

m ksort (array), krsort (array)

= Sort associative array by keys in ascending or
descending order

Sages = array('Fred' => 34, 'Ted' => 45,
'Barney' => 23, 'Gord' => 15);
ksort(Sages); // 'Barney', 'Fred',k 'Gord',k 'Ted’

print r(Sages);

= The order is ascending alphabetical order of the
names
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i Other array functions

= There are many other array functions

reversing arrays

sorting multiple arrays

user-defined sorting

array walk, and array reduce

merging two arrays

array filtering

set operations (union, merge, unique)

stack operations (push, pop, shift, unshift)
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i The for loop

= Similar to C and Java:

{

echo "Scount ";

}

for (Scount = 1; Scount <= 10;

Scount++)

{
echo Sage[S$Sk], ' ';

}

Sages = array (34, 45, 56, 65);

for (Sk = 0; Sk < count($ages); Sk++)
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i The foreach loop (1)

= Useful for indexed arrays when the loop

index is not needed as in preceding
example:

Sages = array (34, 45, 56, 65);

foreach ($Sages as $age)
{
echo Sage, ' ';

}

=« Here $age successively takes on the array
values

« INEFFICIENT: foreach makes a copy of array
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i The foreach loop (2)

= Useful for processing associative arrays

Sproduct = array('id' => 23,
'"desc' => 'No-name PC', 'price' => 549.99);
foreach ($product as $key => S$value)

{
echo "Key = $key, Value = $value<br>";

}

» Skey and $value are successively the keys and

values in the $product array
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i The while loop

= Similar to C and Java.
Can also be used with iterator functions:

Sproduct = array('id' => 23,
'"desc' => 'No-name PC', 'price' => 549.99);

while (list(Skey,$value)= each($Sproduct))

{
echo "Key = $key, Value = $value<br>";

}

= More efficient than £foreach since a copy of the

array is not made (see next slide)
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i How each works

= For the array

Sproduct = array('id' => 23,
'"desc' => 'No-name PC', 'price' => 549.99);

each ($product) initially returns the
associative array
= array (0 => 'id', 1 => 23,
'key' => 'id', 'wvalue' => 23);
= This array can be used either as an indexed
Or an associative array.
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i Loop iterator functions

= The loop iterator functions for arrays
= current (array)

= reset (array)
= next (array)
= prev (array)
= end (array)

= each (array)

= key (array)
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i do while loop

= Similar to C and Java

7/28/2004

do
{

} while (condition)

Statements

BGA
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i User-defined functions

s User defined functions have the form

function name (arg list)

{

Statements
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i Variable scope

= Variable scoping is very simple in PHP
= Variables defined inside functions are local

= Variables defined outside functions are
global variables not available inside a
function unless declared as global inside a
function using the global statement

= There are a few predefined superglobal
variables available anywhere
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i Variable scope example

= Assume that $name is defined outside any
function.

function one ()

{
// global $name not available here

}

TIP
Don't Use
Global
Variables

function two ()

{
global $name;

// global $name is available here

}
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i static variables

s Static variables are local to a function but
initialized only once, when the function is
called the first time

function counter ()

{

static $count value = 0;
return Scount value++;

}

echo counter(); // displays 0
echo counter(); // displays 1
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i A max function

= Return the max of two numeric values

function max2 ($a, $b)

{
if ($a > S$b) return $a;

return $b;

echo "max of 2 and 3 is ",max2(2,3);
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i Pass by value

= Multiply each element of an array by 2

function times2 ($a) This N

{ version
for (8k = 0; $k < count($a); S$k++) makes a
{ P copy of

$a[$k] = 2 * $a[$k]; —\ thearay

}
return $a;

}

Sa = array(1,2,3,4,5);

Sb = times2($a) ;

echo var export($a),"<br/>"; // 1,2,3,4,5

echo var export($b),"<br/>"; // 2,4,6,8,1
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i Pass by reference

= Multiply each element of an array by 2
L

Pass

function times2 ref (&Sa)

{ by
for ($k = 0; $k < count($a); S$k++) \Lreference
{

$a[Sk] = 2 * Sa[Sk];
}

Sa = array(1,2,3,4,5);

echo var export($a),"<br/>"; // 1,2,3,4,5
times2 ref(Sa);

echo var export($a),"<bxr/>"; // 2,4,6,8,10
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i Variable number of args

= Find max of several numbers

function maxn ()

{

$max value = func get arg(0);
for (Sk = 1; Sk < func num args(); Sk++)

{
if (func get arg($k) > S$max value)

{

$max value = func get arg($k);

}
}

return $max_value;

}
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i Including files (1)

= A file can be included in another file using
include and require

= include, include once

= inherits the scope of the include point

= parsing is in HTML mode so code must use the
php tags <?php ... ?>

m require, require once
= like include but causes fatal error if file doesn't
exist
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i Including files (2)

= PHP searches for include files in the paths
specified in the php. ini file

= For example in windows you could use
» include path =

".;c:\php;c:\Apache\php-includes"

= Then the search is in the current directory
(the dot) and if not found there then in the
directories c¢: \php and c: \Apache\php-
includes
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i Classes and objects

= PHP has object oriented features:
= classes
= Objects
= constructors
= methods
= inheritance

= Does not support data encapasulation
however since data fields are always public
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i Writing lines to a file

= First open the file for writing:
» Sout file = fopen("test.dat", "w");

= Write some data to the file
» fwrite (Sout file, "Line 1\n");
» fwrite (Sout file, "Line 2\n");

= Close the file when finished \ialso fputsj
» fclose(Sout file);

= For appending use "a" instead of "w"
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i Reading lines from a file

= First open the file for reading:

» $in file = fopen("test.dat", "r");

= Use a loop to read and display lines
= while (! feof($in file) )
{ $line = fgets($in file, 100);
echo $line, "<br>";
}

= Close the file when finished SRt

characters
» fclose($in file); per line
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i Other file operations (1)

= fgetss(fp, length)
= like fgets but strips out PHP and HTML tags
= fgetcsv(fp, length, delimiter)

= like fgets but returns array of strings using
delimiter as separation character

= fread(fp, length)
= read length bytes using file pointer fp

= fgetc(fp)
= reads a single character and returns it
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i Other file operations (2)

= readfile(filename)

= reads an entire file and echoes it to standard
output (browser). returns number of bytes read

= file(fp)

= reads entire file as lines into an array which is
returned

= file_exists(filename)
= returns true if the specified file exists
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i Other file operations (3)

m unlink (filename)

= delete the specified file. Returns true if the file
was deleted.

m filesize (filename)
= returns length in bytes of specified file

= There are file operations such as rewind,
fseek, and ftell to support direct access

= file locking is supported with flock
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i File Based Page Hit Counter

= It is easy in PHP to make a simple page hit
counter.

= Use a file that contains one number, the
number of times the page has been
accessed.

= Update this count and display it each time
the page is accessed

= View script lang/counter_test.php
» http://localhost/php/lang/counter test.php
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http://localhost/php/lang/counter_test.php

counter_test.php

<?php include ("counter.php"); ?>
<html>

<head>

<title>Testing the counter</title>
</head>

<body>

<hl>Testing the counter</hl>

This page has been visited

<?php echo counter ("counter") ?> times.
</body>

</html>
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counter.php (1)

<?php

// Function returns counter value with given count
// file name (without extension)

function counter ($file name)

{

$count = 0;
if (file exists($file name . ".dat")) {
$counter file = fopen($file name . ".dat",

$count = fgets($counter file, 100);
fclose ($counter file);

}
Scount++;

"r") .
4
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counter.php (2)

// write the new value to the file using exclusive
// lock

$fp = get lock($file name);

$counter file = fopen($file name . ".dat", "w");
fputs (Scounter file, S$count);

fclose ($counter file);

release lock ($£fp);

return Scount;
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counter.php (3)

function get_lock($semaphore_£i1e_name)

{
$fp = fopen ($semaphore file name . ".sem", "w");
flock ($Sfp, 2);
return $fp;

function release lock ($S£fp)

{
flock ($fp, 3);
fclose ($S£fp) ;

}

view script simple/counter.php
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i Example scripts

= The following example scripts illustrate the
PHP language

= A better way to show them is to use the link
http://localhost/php/ which shows both the
source and the output in side by side frames
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http://localhost/php/
http://localhost/php/

i Example scripts (1)

= http://localhost/php/lang/scalars.php
= VIEW source

= http://localhost/php/lang/display.php
= VIEW source

= http://localhost/php/lang/stringsl.php
= VIEW source

= http://localhost/php/lang/strings2.php

= VIEW source
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http://localhost/php/lang/scalars.php
http://localhost/php/lang/scalars.php
http://localhost/php/lang/display.php
http://localhost/php/lang/display.php
http://localhost/php/lang/strings1.php
http://localhost/php/lang/strings2.php

i Example scripts (2)

= http://localhost/php/lang/strings3.php
= VIEW source

s http://localhost/php/lang/arithmetic.php
= VIEW source

n http://localhost/php/lang/math.php
= VIEW source

= http://localhost/php/lang/arraysi.php

= VIEW source
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http://localhost/php/lang/strings3.php
http://localhost/php/lang/strings3.php
http://localhost/php/lang/arithmetic.php
http://localhost/php/lang/arithmetic.php
http://localhost/php/lang/math.php
http://localhost/php/lang/arrays1.php

i Example scripts (3)

= http://localhost/php/lang/arrays2.php
= VIEW source

= http://localhost/php/lang/arrays3.php
= VIEW source

= http://localhost/php/lang/arrays4.php
= VIEW source

s http://localhost/php/lang/sort.php

= VIEW source
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http://localhost/php/lang/arrays2.php
http://localhost/php/lang/arrays2.php
http://localhost/php/lang/arrays3.php
http://localhost/php/lang/arrays3.php
http://localhost/php/lang/arrays4.php
http://localhost/php/lang/sort.php

i Example scripts (4)

= http://localhost/php/lang/testing.php
= VIEW source

s http://localhost/php/lang/comparison.php
= VIEW source

s http://localhost/php/lang/regexpl.php
= VIEW source

= http://localhost/php/lang/scoping.php

= VIEW source
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http://localhost/php/lang/testing.php
http://localhost/php/lang/testing.php
http://localhost/php/lang/comparison.php
http://localhost/php/lang/comparison.php
http://localhost/php/lang/regexp1.php
http://localhost/php/lang/scoping.php

i Example scripts (5)

s http://localhost/php/lang/loops.php
= VIEW source

s http://localhost/php/lang/functionsi.php
= VIEW source

= http://localhost/php/lang/trigtable.php
= VIEW source

s http://localhost/php/lang/write.php

= VIEW source

7/28/2004 BGA 120


http://localhost/php/lang/loops.php
http://localhost/php/lang/loops.php
http://localhost/php/lang/functions1.php
http://localhost/php/lang/functions1.php
http://localhost/php/lang/trigtable.php
http://localhost/php/lang/write.php

i Example scripts (6)

s http://localhost/php/lang/read.php
= VIEW source
= http://localhost/php/lang/append.php
= VIEW source
s http://localhost/php/lang/counter test.php

» View source (counter test.php)
» View source (counter.php)
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http://localhost/php/lang/read.php
http://localhost/php/lang/read.php
http://localhost/php/lang/append.php
http://localhost/php/lang/append.php
http://localhost/php/lang/counter_test.php
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