!'_ COSC 2206 Internet Tools

Introduction to PHP
Installing PHP (brief)
Language Summary
http://localhost/php/

http://localhost/php/
http://localhost/php/

!'_ Introduction to PHP

Origins of PHP
Important Features
Version Incompatibilities

i PHP Timeline

= Rasmus Lerdorf's Personal Home Page tools,
1994

= Later recursively renamed to PHP Hypertext
Processor

= PHP 1.0, June 1995
= PHP 2.0, April 1996
= PHP 3.0, June 1998
= We are using version 4.3.7 (June 2003)

7/28/2004 BGA

i Important PHP Features (1)

= Designed from beginning as a server-side
web scripting language.
= Runs on all major operating systems.

= Built-in support for several relational
databases such as MySQL

= Built-in support for session management
using cookies and / or URL rewriting.

= Can also be used for command-line scripting

7/28/2004 BGA

i Important PHP Features (2)

= Interpreted language

= Loosely typed language

= a variable can hold a value of any type at
different stages in its lifetime

= Hybrid language

= Ccan be used in a non object-oriented style or an
object-oriented style or a mixture of both.

= Currently the most popular web scripting
language

7/28/2004 BGA

i Important PHP features (3)

= Can be configured as a CGI process
= This is inefficient.

= @ Separate process is needed for each
connection to the web server.

= Can be configured as an Apache module
= This is efficient.

= one instance of the PHP interpreter remains
running as long as the web server is running.

7/28/2004 BGA

i Version incompatibilities

= [he latest versions 4.1 and above are

not compatible with earlier versions if @
register globals Is set to off
(now the default in the php . ini file).

= It is highly recommended to leave it off for security
reasons. We will assume this.

= This means that values in certain global arrays are
no longer mapped to variables in PHP.

= More on this when we do web apps in PHP

7/28/2004 BGA 7

!'_ COSC 2206 Internet Tools

Brief PHP Installation Instructions
Windows XP

i Installing PHP for Win XP

= Here we give only a brief description of
installation

= More complete details are available on the
course CD-ROM or online at

http://www.cs.laurentian.ca/badams/c2206/install-notes/php/

7/28/2004 BGA

http://www.cs.laurentian.ca/badams/c2206/install-notes/php/
http://www.cs.laurentian.ca/badams/c2206/install-notes/php/

i Getting PHP

= Go to www.php.net to get the software.
=« It's also on the CD-ROM (version 4.3.7)

s For windows it should have a name like
php-4.3.7-Win32.zip

= Unzip it into your top level ¢: \ directory

= This gives a directory called
c:\php-4.3.7-Win32

= Rename this directory to just c¢: \php

7/28/2004 BGA

10

http://www.php.net/

i Getting PHP documentation

= The documentation is an 1800 page manual
and it is necessary to have it.

s It comes in several formats but the best for
Windows is the help file format

= [0 get this format download the file
php manual chm 12.zip

= Unzip it in your ¢: \php\docs directory and
put a shortcut to it on your start menu

= It is also available on the CD

7/28/2004 BGA 11

i php.ini configuration file

= In the directory c: \php you will find a

default configuration file called
php.1i1ni-recommended

= Copy it to your windows directory

= ¢:\windows
= Rename the copy to just php.ini

7/28/2004 BGA

12

i Editing php.ini (1)

= Make the following changes to php. ini
= locate doc root =
= Change to doc_root = "c:\Apache\htdocs"
= locate display errors = Off
= change t0 display errors = On
(for learning PHP)

= We assume that Apache is installed directory
c: \Apache

7/28/2004 BGA 13

i Editing php.ini (2)

= Make the following changes to php. ini

= Uncomment the lines
= ;extension=php gd2.dll
;extension=php pdf.dll

= Replace the line
= extension dir

-extension_dir

" / A

"c:\php\extensions"

7/28/2004 BGA

14

i Editing php.ini (3)

= Make the following changes to php. ini

= Replace the line
= session save path = "/tmp"

= with (make directory sessions)
= session_save path = "c:\Apache\sessions"

= Change the line for Windows
= ;include path = ".;c:\php\includes"

to (make directory php-includes)

= include path = ".;c:\php;c:\Apache\php-
includes"

7/28/2004 BGA 15

i Configuring Apache (1)

= To configure PHP as an Apache module
locate the file ¢: \php\php4ts.dll

= Copy it to

» ¢:\windows\system32

= Now it is necessary to configure apache as a
module (built-in to Apache)

7/28/2004 BGA 16

i Configuring Apache (2)

= Edit c:\apache\conf\httpd.conf and

add the following LoadModule statement
» LoadModule php4_module c:/php/sapi/php4apache.dll

s Locate the section of the file with the
AddModule statements and add the two lines
» AddModule mod_php4.c

» AddType application/x-httpd-php .php
» AddType application/x-httpd-php-source .phps

= This tells apache to treat files with the php
extension as executable by PHP

7/28/2004 BGA 17

i Configuring Apache (3)

= Restart or start Apache so that the

modifications to httpd. conf will be read.

= In the command window you should see
» Apache/1.3.29 (Win32) PHP/4.3.7 running

= This indicates that PHP has been properly
installed as an Apache module

7/28/2004 BGA

18

& PHP-Apache Integration

Send page

PHP Module

ﬁ
Request

page

7/28/2004 BGA

19

i Testing PHP

= Create the following hello.php script

<html>
<head><title>Hello Script</title></head>
<body>
<?php echo "<hl>Hello PHP World'!</hl>" ?>
</body>
</html>

= Put it in c: \apache\htdocs\testphp

= Try the URL
= http://localhost/testphp/hello.php

7/28/2004 BGA

20

!'_ Language Summary

Where does PHP code go?
Data types
Built-in functions
Control structures

i Where does PHP code go?

= PHP code can be standalone (like Perl) or
embedded in HTML code (like ASP)

= PHP script tags are used to distinguish PHP

code from HTML code:
<?php w

PHP code goes here

7> End PHP mode

= These tags are XML compliant and should
always be used for fully portable PHP code

7/28/2004 BGA 22

i 8 Data Types

= 4 are scalar types
= integer, floating point (double),
= String,
= boolean

= 2 are structured types
= array and object

= 2 are special types
= resource, NULL

7/28/2004 BGA

23

i Declaring Variables

= Variable types are not declared
= Type is type of value currently assigned

= All variables begin with a dollar sign
= next character is a letter or underscore
= Ffemaining are letters, underscore or digits

Scount = 0;

Sname = "Fred";

Sprice = 45.50; /r case]
Insensitive

$big num 1.23455225;/////«\

TRUE ;

7/28/2004 BGA

Ssuccess

24

i Naming conventions

= The convention in PHP (coming from C) is
that the underscore character is used to
simulate a space in variable names:

= Example:
» Snumber of files = 3;

= This is different from the uppercase
convention that is used in Java
» numberOfFiles = 3;

7/28/2004 BGA

25

i Constants

= Constants are defined using the define
function and do not begin with a dollar sign

= The convention is to use all uppercase
letters and _ for names of constants

= Examples:
define ('COURSE', "Internet Tools");

define('CM TO INCH', 2.54);
= NOw use COURSE and CM_TO INCH to refer
to these constants

7/28/2004 BGA 26

i Case sensitivity

= PHP is a weird mixture of case sensitivity
and case insensitivity

= variable and constant names are case
sensitive

= boolean values TRUE and FALSE are not
case sensitive.

s function names are not case sensitive
= Maybe they will fix this in a future version

7/28/2004 BGA

27

i Three kinds of comments

= C, Java style multi-line comments
/* This is a multi-line
comment
*/
= C++, Java single line comments

// a single line comment

= Unix shell script and Perl comments
a single line comment

7/28/2004 BGA

28

i Literals and Strings

= Integer literals
=-1, 1, 2, 3

= Floating point literals
=1.234, -4.56, 1.34E-12

= There are two kinds of string literal
= Single quotes: 'hello'
= double quotes: "hello™

= | here are two boolean literals
=« TRUE, FALSE

7/28/2004 BGA

29

i Variable Interpolation (1)

= Interpolation takes place inside doubly
quoted strings.

= This means that variables are replaced by

their values and special control sequences
such as \n take effect.

= Interpolation does not take place inside
singly quoted strings so \n is just two

characters
= This is similar to interpolation in Perl.

7/28/2004 BGA

30

i Variable Interpolation (2)

s If Sname has the value "Fred" then

» "Hello S$name" has the value
Hello Fred

s 'Hello S$name' has the value
Hello S$name

s "\Sname = S$name" has the value
Sname = Fred

= In the last case the escape character \ is
used to specify that the first $ is a literal

character.

7/28/2004 BGA

31

i Displaying strings (1)

= The print function displays text on the
standard output.
» print ("Hello $name\n");

= The echo function is similar but parentheses

are not needed and several arguments can
be supplied

= echo "Hello ", S$name, "\n";
= There is also a C-style print£ function that
produces formatted output.

7/28/2004 BGA 32

i Displaying strings (2)

m print r(expression)

= function which displays a string representation
of a variable such as an array.

m var dump (expression)
= Similar output as print r
m var export (expression)

= returns a string representation of a variable. Can
be used in a print statement (like toString in
Java)

7/28/2004 BGA 33

i Type casting

= The type of a variable can be changed using
the typecasting operators
= (1nt) Or (integer)
= (float) Or (double) Or (real)
s (bool) Or (boolean)
= (string) Or ". "
= (array)
= (object)

7/28/2004 BGA 34

i Arithmetic

= The usual operators are +, -, *, and /
= Note that / is always a floating point divide
= For integer divide use (int) ($a/$b)

= The remainder (mod) operator is % so if $a
and $b have integer values then $a % $bis
the remainder when $a is divided by $b.

= The ++ and -- operators are available
= Also we have +=, -=, *= and so on

7/28/2004 BGA 35

i What is false in PHP?

= In the conversion to boolean only the
following are considered to be false.

s
s
s

ne boolean value FALSE
ne integer 0
ne floating point number 0.0

s

ne empty string "" and the string "0"

= an array with no elements (like array ())

= an object with no elements
= the special value NULL, and an unset variable

7/28/2004

BGA

36

i Relational Operators

= PHP has the usual C and Java style operators
s || for logical or
« &§& for logical and
" for negation

= There are also different precedence versions
= or forlogical or
« and for logical and

7/28/2004 BGA 37

i Comparison operators

= PHP has the usual C and Java style operators
1 <, <=, ==, 1=, >, >=

= These operators perform type conversions if
necessary before the comparison

= There are also the operators
n ===, and '==

= These operators compare value and type so
no type conversion is done

= These operators are also used for strings

7/28/2004 BGA 38

i Comparison of == and ===

= Suppose $a has the value "0" as a string
= Suppose $b has the value 0 as an integer

= Then

= Sa == $b is true since both "0" and 0 evaluate
to false but
= Sa === $b is false since $a and $b have

different types

7/28/2004 BGA

39

i Conditional statements

= The if statement is similar to C and Java
except elseif can be used instead of

else 1f >>

7/28/2004

if (booleanExpressiont)
{

}
elseif (booleanExpression2)

BGA

40

i Testing variables

» empty (variable)

= returns true if variable is set and has an empty
value (for example, 0, ').

m isset (variable)

= returns true if the variable exists
= alsO see unset

= is null (variable)

= returns true if an existing variable has the null
value

7/28/2004 BGA

41

empty / isset (from manual)

<?php
Svar = 0;

// Evaluates to true because $var is empty

if (empty($var))

echo '$var is either 0, empty, or not set at all';

// Evaluates as true because $var is set
if (isset($wvar))

echo '$var is set even though it is empty';

?>

7/28/2004 BGA

4

42

i Math functions (1)

= There are many math constants in PHP. For
example 7 isM PI and v2 isM SQRT2

s Example:

Sradius = 1.0;
$circ = 2.0 * M PI * Sradius;
$area = M PI * Sradius * $radius;

echo "Circumference is S$circ\n";

echo "Area is Sarea\n";

7/28/2004 BGA 43

i Math functions (2)

= There are many math functions in PHP:
= abs sqrt
= S1n cos tan
= asin acos atan atan2
m exp expml log logpl
= rand round
= min max
= POW

= and many more

7/28/2004 BGA

!'_ COSC 2206 Internet Tools

Strings and String Functions
in PHP

i String interpolation

= Single or double quotes as delimiters

= Variables are not interpolated in singly
quoted strings.

= T0 include a single quote it is necessary to
use \' and to include a backslash use \\

= Variables are interpolated in doubly quoted
strings and escape sequences such as \ ",

\n, \\, \$, \t, \{, \}, \[, \]
can be used.

7/28/2004 BGA 46

i String operations (1)

= The dot operator is used to concatenate
strings
= "Hello " . "World" is the same as
"Hello World"

= echo, print, printf, print r,
var dump functions display strings on
standard output

= The length of a string $s is strlen ($s)
= The $i-th character of string $s is $s[$i]

7/28/2004 BGA 47

i String operations (2)

= Removing whitespace from strings
= Trim whitespace at left end

» Strimmed string = ltrim(Ss);
= Trim whitespace at right end

» Strimmed string = rtrim(Ss);

= [rim whitespace at both ends
» Strimmed string = trim($s);

7/28/2004 BGA

48

i String operations (3)

= Converting $s to upper case or lower case
s Supper = strtoupper (Ss);
» Slower = strtolower ($s) ;
= Converting first character of $s to uppercase

» Supper first = ucfirst($s);

= Converting first character of every word in
$s to uppercase

» Supper word = ucwords ($s) ;

7/28/2004 BGA 49

i HTML encoding

= Special HTML characters such as <, > and &
have special entities (&1t ;, > ;, &)
so they can be used in HTML documents as
ordinary characters without special meaning.
The htmlspecialchars function can be
used to do this. For example

= $s1 = "<p>";

s $s2 = htmlspecialchars (Ssl);

= $s2 has the value "<p> "

7/28/2004 BGA 50

i Database encoding

= SQL query strings and database fields need
to be encoded. The encodings can depend
on the particular database.

= The standard encoding is to precede single
quotes, double quotes, NUL bytes and
backslashes by a backslash

= The addslashes function performs the
encoding and the stripslashes function

performs the decoding.

7/28/2004 BGA

51

i String comparison (1)

= Can use the operators
u <, <=, >, >=, === ==

= Don't use == and '=. Unexpected results for
mixed comparisons of numbers and strings.

= Can use === and !== to compare 2 strings

if (Sstrl === S$str2)
{

echo "Strings are equal";

}

7/28/2004 BGA 52

i String comparisons (2)

= T0 compare two strings as strings its best to
use the stremp function (similar to C, Java)

= stremp ($s1,$s2) returns
= Negative integer if $s1 precedes $s2
= zero if $s1 and $s2 are the same
= positive integer if $s1 follows $s2

= There is also strcasecmp to do case
iInsensitive comparison

= There are other comparison functions.

7/28/2004 BGA 53

i Substrings, replacement

m substr (string, start)

= return substring of string beginning at index
start and continuing to end of the string

m substr (string, start, length)

= return substring of string beginning at index
start and consisting of length characters

= There are also functions substr replace,
strrev, str repeat, str pad

7/28/2004 BGA 54

i Exploding a string

m explode (separator, string)

= extracts an array of substrings using the
characters in separator as field separators

= Example

Saccount = "123:Jack Sprat:45.50";

Sfields = explode(":", $account);

s $fields is an array of the three strings
"123", "Jack Sprat”, and "45.50"

7/28/2004 BGA 55

i Imploding a string

s 1implode (separator, array)

= inverse of explode: makes a single string from
the strings in an array using separator string
between each string in the array

= Example:

Sfields = array("123", "Jack Sprat", 45.50;

Saccount = implode(":", $fields);

s Saccount how contains the string
"l23:Jack Sprat:45.50"

7/28/2004 BGA 56

i Searching strings (1)

s strpos (string, target)

= return position of first occurrence of target string
in string. If target not found false is returned but
if target is found at position 0 then 0 is returned
and this would also be false, YUK. Therefore use
=== to check if string wasn't found.

Spos = strpos("string to search", "str");
if (Spos === false) {
// string wasn't found
} else {
// string was found at position $pos
}

7/28/2004 BGA 57

i Searching strings (2)

s Most other string searching functions are
bizarre and probably should never be used.
= For example strrpos finds the last

occurrence of a character but won't find the

last occurrence of a multi-character string.
To find last occurrence use strrev and

strpos.

= Forget these functions and use regular
expressions.

7/28/2004 BGA 58

!'_ COSC 2206 Internet Tools

Regular Expressions in PHP

i Regular expressions (1)

= Regular expressions provide a powerful way
to do pattern matching: finding one pattern
in another.

= The simplest patterns are fixed strings like
those in the searching function strpos.

= However patterns can represent complex
classes of strings.

= Useful for validating strings

7/28/2004 BGA

60

i Regular expressions (2)

m ereg(pat, str)

» returns true if match for pattern was found in
string.
» ergi iS the case insensitive version
m ereg replace(pat, replace, str)

= Each occurrence of pattern match in string is
replaced by the replace string. Result is returned
as a new string

= ergi replace is the case insensitive version

7/28/2004 BGA 61

i Regular expressions (3)

m split(pattern, string)

= splits string into substrings using pattern as the
delimiter. The substrings are returned as an
array.

7/28/2004 BGA

62

i Simple Reg Exp Examples (1)

= Matching strings containing only digits
s Sregexp = "A[0-9]+$";
s ereg(Sregexp, "2342123") returns true
= ereg (Sregexp, "2124sd") returns false

= ~ matches the beginning of the string

= $ matches the end of the string

= [0-9] specifies a range for a character
= + means 1 or more occurrences

7/28/2004 BGA

63

i Simple Reg Exp Examples (2)

= Matching phone numbers of the form
"ddd-ddd-dddd"

m Sregexp =
"A[0-9]{3}-[0-9]{3}-[0-9]1{4}$";

= Here the hyphen is a literal character and
{3} indicates exactly three occurrences of
the preceding character.

7/28/2004 BGA

64

i Simple Reg Exp examples (3)

= Match file names with php extension in

directories simple or forms, for example
simple/test.php Or forms/temp.php

$regexp = "*(simple|forms)/[0-9a-zA-Z]+\.phpS";
Sfilename = "simple/test.php";
Svalid = ereg($Sregexp, $filename) ;

= . represents any character so to get a literal . it
IS hecessary to use \.

= (...]...) is alternation: simple 'or' test in this case

7/28/2004 BGA 65

i Perl Regular Expressions

= There are PCRE (Perl Compatible Regular
Expressions) versions of these functions
= preg match(pattern, str)
» preg replace(pattern, replace, str)
» preg split(pattern, str)

= Delimiters are needed in the pattern

=eqg /.../
= And a few variations:
» preg match all, preg grep

7/28/2004 BGA 66

i Perl Reg Exp Example

= Match names containing letters, hyphens
and apostrophe's
s Sregexp = '/*[a-zA-Z\-\"']+$/"';

= Note the delimiters / ... / needed for Perl

= Also note that - and ' are escaped since
they are special

= Now to validate a name use
» preg match ($regexp, S$name)

7/28/2004 BGA 67

!'_ COSC 2206 Internet Tools

Arrays in PHP

i Two types of arrays

= Indexed arrays

« the indices are 0, 1, 2,

« these are like arrays in C, Java, or Perl
= Associative arrays

= indices are strings (keys)

= these are similar to hashes in Perl or HashMap's
In Java

= Any values can be stored in an array

7/28/2004 BGA

69

i Creating indexed arrays

= Creating and initializing an array

= $a = array (10, 20, "Help");

= $a[0] is 10, $a[1] is 20, $a[2] iS "Help"
= Extending the array dynamically

» Sa[] = 30; // this is $a[3]
= Creating an array by autovivification

= $b[0] = 10; $b[1l] = 20;

s Sb[] = "Help"; // next element

» Sb[] = 30; // next element

7/28/2004 BGA 70

i Indexed arrays from ranges

» Sdigits = range(0,9);
= Sdigits[0] is O,
= Sdigits[1l] is 1, ...

m $letters = range('a', 'z');

= $letters[0] IS 'a',
= $letters[1l] IS 'b', ...

7/28/2004 BGA

71

i Indexed array list operation

= The 1ist operation is quite useful for
making multiple assignments from an
indexed array

Sproduct = array (123, 'No-name PC', 450);
list ($id, $description, S$price) = S$product
echo "<p>id = $id</p>";

echo "<p>description = $description</p>";

echo "<p>price = $price</p>";

= This only works for indexed arrays

7/28/2004 BGA 72

i Indexed array slices

m array slice(array, offset,
length)

= returns a subarray with length elements of array
begining at offset

$letters = range('a', 'z');

$slice = array slice($Sletters, 5, 10);

s Extracts Sletters[5] tO Sletters[14]
as $Sslice[0] to $Sslice[9]

7/28/2004 BGA 73

i Associative arrays

= An associative array is a table of key-value
pairs. Here the names are the keys and the
values are the ages.

Sage = array('Fred' => 37, 'Gord' => 23,
'"Alice' => 17, 'Bob' => 23);
echo "Fred's age is ", $age['Fred'];

Sage['Fred'] = 65; // Fred is now a senior

echo "
Fred's age is {$age['Fred']}";

Note braces
needed for
interpolation

7/28/2004 BGA

74

i Associative arrays as records

= An associative array can represent a record
in @ database

Saccount = array('number' => 123,
'name' => 'Fred',
'balance' => 450.50) ;
echo "Account balance is ", $account['balance'];

Saccount['balance'] += 100; // deposit $100

echo "
New balance is {$account['balance’']}";

7/28/2004 BGA

75

i Associative arrays of arrays

= The values can be anything

Scolors = array('red' => array(255,0,0),
'green' => array(0,255,0),
'blue' => array(0,0,255),
'yellow' => array(255,255,0),
'brown' => array(128,64,0));
Syellow = $colors['yellow']; // yellow array
Sred = $colors['yellow'][0]; // red part of yellow

= The values here are arrays each containing
the red, green blue components of a color

7/28/2004 BGA

i Associative array keys

m array keys (array)

» extracts the keys of the given associative array
into an indexed array

Scolors = ...

$color names = array keys(Scolors);

= Then $color names[0] iS 'red’, ...,
$color names[4] iS 'brown'

7/28/2004 BGA

77

i Checking for key existence (1)

m array key exists(key, array)

= returns true if the given key exists in the array.
If the key exists it may or may not be null.

Sproduct = array('id' => 1, 'desc' => null,
'price' => 2.50);

if (array key exists('desc', S$product))

{ echo 'key exists'; }
else
{ echo 'key does not exist'; }

= Here "key exists" is displayed (also see is_null)

7/28/2004 BGA 78

i Checking for key existence (2)

m isset (array|['key'])

= returns true if the given key exists in the array

and is not null

{ echo
else
{ echo

'price' => 2.50);

if (isset($product['desc']))

'key exists and is not null'; }

'key does not exist or 1is null';

Sproduct = array('id' => 1, 'desc' => null,

}

= Here "key does not exist or is null" is displayed

7/28/2004

BGA

79

i array --> variables (extract)

= The extract function converts an array to
variables

Saccount = array('number' => 123, 'name' => 'Fred',
'balance' => 45.50);
extract (Saccount, EXTR PREFIX SAME, "my");

= This creates the variables my number,
my name, my balance with the values 123,
"Fred", and 45.50

= There is an inverse function called compact

7/28/2004 BGA 80

i Array copy function

= In PHP array assignment is a copy operation

= This is very different than Java where array
assignment simply makes a new reference to

the same array. To test this try

$age copy = $age;

$age copy['Gord'] = 55;
var dump ($age) ;

var dump ($age_copy) ;

= Gord's age is still 23 in the $age array.

7/28/2004 BGA 81

i searching arrays

= in array(element, array)
in array(element, array,TRUE)

= returns true if the given element is found in the
given array (TRUE option for same types)

m array search(element, array)
array search(element, array,TRUE)

= returns the key of the element if found, else
returns false (TRUE option for same types)

7/28/2004 BGA 82

i Sorting arrays (1)

s sort (array), rsort (array)

= sort array in ascending alphabetical or numerical
order or reverse alphabetical or numerical order

Snames = array('Fred', 'Ted', 'Barney', 'Gord');

sort(Snames); // 'Barney', 'Fred', 'Gord', 'Ted'’

print r(Snames);

rsort($Snames); // 'Ted',6 'Gord', 'Fred', 'Barney'’

print r(Snames);

7/28/2004 BGA

83

i Sorting arrays (2)

m asort (array), arsort (array)

= Sort associative array by values in ascending or
descending order

Sages = array('Fred' => 34, 'Ted' => 45,
'Barney' => 23, 'Gord' => 15);
asort($ages); // 'Gord', 'Barney, 'Fred', 'Ted’

print r(Sages);

= The order is increasing order of age

7/28/2004 BGA

84

i Sorting arrays (3)

m ksort (array), krsort (array)

= Sort associative array by keys in ascending or
descending order

Sages = array('Fred' => 34, 'Ted' => 45,
'Barney' => 23, 'Gord' => 15);
ksort(Sages); // 'Barney', 'Fred',k 'Gord',k 'Ted’

print r(Sages);

= The order is ascending alphabetical order of the
names

7/28/2004 BGA

85

i Other array functions

= There are many other array functions

reversing arrays

sorting multiple arrays

user-defined sorting

array walk, and array reduce

merging two arrays

array filtering

set operations (union, merge, unique)

stack operations (push, pop, shift, unshift)

7/28/2004 BGA 86

i The for loop

= Similar to C and Java:

{

echo "Scount ";

}

for (Scount = 1; Scount <= 10;

Scount++)

{
echo Sage[S$Sk], ' ';

}

Sages = array (34, 45, 56, 65);

for (Sk = 0; Sk < count($ages); Sk++)

7/28/2004 BGA

87

i The foreach loop (1)

= Useful for indexed arrays when the loop

index is not needed as in preceding
example:

Sages = array (34, 45, 56, 65);

foreach ($Sages as $age)
{
echo Sage, ' ';

}

=« Here $age successively takes on the array
values

« INEFFICIENT: foreach makes a copy of array

7/28/2004 BGA 88

i The foreach loop (2)

= Useful for processing associative arrays

Sproduct = array('id' => 23,
'"desc' => 'No-name PC', 'price' => 549.99);
foreach ($product as $key => S$value)

{
echo "Key = $key, Value = $value
";

}

» Skey and $value are successively the keys and

values in the $product array

7/28/2004 BGA

89

i The while loop

= Similar to C and Java.
Can also be used with iterator functions:

Sproduct = array('id' => 23,
'"desc' => 'No-name PC', 'price' => 549.99);

while (list(Skey,$value)= each($Sproduct))

{
echo "Key = $key, Value = $value
";

}

= More efficient than £foreach since a copy of the

array is not made (see next slide)

7/28/2004 BGA

90

i How each works

= For the array

Sproduct = array('id' => 23,
'"desc' => 'No-name PC', 'price' => 549.99);

each ($product) initially returns the
associative array
= array (0 => 'id', 1 => 23,
'key' => 'id', 'wvalue' => 23);
= This array can be used either as an indexed
Or an associative array.

7/28/2004 BGA

91

i Loop iterator functions

= The loop iterator functions for arrays
= current (array)

= reset (array)
= next (array)
= prev (array)
= end (array)

= each (array)

= key (array)

7/28/2004 BGA

92

i do while loop

= Similar to C and Java

7/28/2004

do
{

} while (condition)

Statements

BGA

93

i User-defined functions

s User defined functions have the form

function name (arg list)

{

Statements

7/28/2004 BGA

94

i Variable scope

= Variable scoping is very simple in PHP
= Variables defined inside functions are local

= Variables defined outside functions are
global variables not available inside a
function unless declared as global inside a
function using the global statement

= There are a few predefined superglobal
variables available anywhere

7/28/2004 BGA

i Variable scope example

= Assume that $name is defined outside any
function.

function one ()

{
// global $name not available here

}

TIP
Don't Use
Global
Variables

function two ()

{
global $name;

// global $name is available here

}

7/28/2004 BGA 96

i static variables

s Static variables are local to a function but
initialized only once, when the function is
called the first time

function counter ()

{

static $count value = 0;
return Scount value++;

}

echo counter(); // displays 0
echo counter(); // displays 1

7/28/2004 BGA

i A max function

= Return the max of two numeric values

function max2 ($a, $b)

{
if ($a > S$b) return $a;

return $b;

echo "max of 2 and 3 is ",max2(2,3);

7/28/2004 BGA

98

i Pass by value

= Multiply each element of an array by 2

function times2 ($a) This N

{ version
for (8k = 0; $k < count($a); S$k++) makes a
{ P copy of

$a[$k] = 2 * $a[$k]; —\ thearay

}
return $a;

}

Sa = array(1,2,3,4,5);

Sb = times2($a) ;

echo var export($a),"
"; // 1,2,3,4,5

echo var export($b),"
"; // 2,4,6,8,1

7/28/2004 BGA

99

i Pass by reference

= Multiply each element of an array by 2
L

Pass

function times2 ref (&Sa)

{ by
for ($k = 0; $k < count($a); S$k++) \Lreference
{

$a[Sk] = 2 * Sa[Sk];
}

Sa = array(1,2,3,4,5);

echo var export($a),"
"; // 1,2,3,4,5
times2 ref(Sa);

echo var export($a),"<bxr/>"; // 2,4,6,8,10

7/28/2004 BGA 100

i Variable number of args

= Find max of several numbers

function maxn ()

{

$max value = func get arg(0);
for (Sk = 1; Sk < func num args(); Sk++)

{
if (func get arg($k) > S$max value)

{

$max value = func get arg($k);

}
}

return $max_value;

}

7/28/2004 BGA 101

i Including files (1)

= A file can be included in another file using
include and require

= include, include once

= inherits the scope of the include point

= parsing is in HTML mode so code must use the
php tags <?php ... ?>

m require, require once
= like include but causes fatal error if file doesn't
exist

7/28/2004 BGA 102

i Including files (2)

= PHP searches for include files in the paths
specified in the php. ini file

= For example in windows you could use
» include path =

".;c:\php;c:\Apache\php-includes"

= Then the search is in the current directory
(the dot) and if not found there then in the
directories c¢: \php and c: \Apache\php-
includes

7/28/2004 BGA

103

i Classes and objects

= PHP has object oriented features:
= classes
= Objects
= constructors
= methods
= inheritance

= Does not support data encapasulation
however since data fields are always public

7/28/2004 BGA 104

i Writing lines to a file

= First open the file for writing:
» Sout file = fopen("test.dat", "w");

= Write some data to the file
» fwrite (Sout file, "Line 1\n");
» fwrite (Sout file, "Line 2\n");

= Close the file when finished \ialso fputsj
» fclose(Sout file);

= For appending use "a" instead of "w"

7/28/2004 BGA 105

i Reading lines from a file

= First open the file for reading:

» $in file = fopen("test.dat", "r");

= Use a loop to read and display lines
= while (! feof($in file))
{ $line = fgets($in file, 100);
echo $line, "
";
}

= Close the file when finished SRt

characters
» fclose($in file); per line

7/28/2004 BGA

106

i Other file operations (1)

= fgetss(fp, length)
= like fgets but strips out PHP and HTML tags
= fgetcsv(fp, length, delimiter)

= like fgets but returns array of strings using
delimiter as separation character

= fread(fp, length)
= read length bytes using file pointer fp

= fgetc(fp)
= reads a single character and returns it

7/28/2004 BGA 107

i Other file operations (2)

= readfile(filename)

= reads an entire file and echoes it to standard
output (browser). returns number of bytes read

= file(fp)

= reads entire file as lines into an array which is
returned

= file_exists(filename)
= returns true if the specified file exists

7/28/2004 BGA 108

i Other file operations (3)

m unlink (filename)

= delete the specified file. Returns true if the file
was deleted.

m filesize (filename)
= returns length in bytes of specified file

= There are file operations such as rewind,
fseek, and ftell to support direct access

= file locking is supported with flock

7/28/2004 BGA

109

i File Based Page Hit Counter

= It is easy in PHP to make a simple page hit
counter.

= Use a file that contains one number, the
number of times the page has been
accessed.

= Update this count and display it each time
the page is accessed

= View script lang/counter_test.php
» http://localhost/php/lang/counter test.php

7/28/2004 BGA

110

http://localhost/php/lang/counter_test.php

counter_test.php

<?php include ("counter.php"); ?>
<html>

<head>

<title>Testing the counter</title>
</head>

<body>

<hl>Testing the counter</hl>

This page has been visited

<?php echo counter ("counter") ?> times.
</body>

</html>

7/28/2004 BGA 111

counter.php (1)

<?php

// Function returns counter value with given count
// file name (without extension)

function counter ($file name)

{

$count = 0;
if (file exists($file name . ".dat")) {
$counter file = fopen($file name . ".dat",

$count = fgets($counter file, 100);
fclose ($counter file);

}
Scount++;

"r") .
4

7/28/2004 BGA

112

counter.php (2)

// write the new value to the file using exclusive
// lock

$fp = get lock($file name);

$counter file = fopen($file name . ".dat", "w");
fputs (Scounter file, S$count);

fclose ($counter file);

release lock ($£fp);

return Scount;

7/28/2004 BGA

113

counter.php (3)

function get_lock($semaphore_£i1e_name)

{
$fp = fopen ($semaphore file name . ".sem", "w");
flock ($Sfp, 2);
return $fp;

function release lock ($S£fp)

{
flock ($fp, 3);
fclose ($S£fp) ;

}

view script simple/counter.php

7/28/2004 BGA 114

i Example scripts

= The following example scripts illustrate the
PHP language

= A better way to show them is to use the link
http://localhost/php/ which shows both the
source and the output in side by side frames

7/28/2004 BGA 115

http://localhost/php/
http://localhost/php/

i Example scripts (1)

= http://localhost/php/lang/scalars.php
= VIEW source

= http://localhost/php/lang/display.php
= VIEW source

= http://localhost/php/lang/stringsl.php
= VIEW source

= http://localhost/php/lang/strings2.php

= VIEW source

7/28/2004 BGA 116

http://localhost/php/lang/scalars.php
http://localhost/php/lang/scalars.php
http://localhost/php/lang/display.php
http://localhost/php/lang/display.php
http://localhost/php/lang/strings1.php
http://localhost/php/lang/strings2.php

i Example scripts (2)

= http://localhost/php/lang/strings3.php
= VIEW source

s http://localhost/php/lang/arithmetic.php
= VIEW source

n http://localhost/php/lang/math.php
= VIEW source

= http://localhost/php/lang/arraysi.php

= VIEW source

7/28/2004 BGA 117

http://localhost/php/lang/strings3.php
http://localhost/php/lang/strings3.php
http://localhost/php/lang/arithmetic.php
http://localhost/php/lang/arithmetic.php
http://localhost/php/lang/math.php
http://localhost/php/lang/arrays1.php

i Example scripts (3)

= http://localhost/php/lang/arrays2.php
= VIEW source

= http://localhost/php/lang/arrays3.php
= VIEW source

= http://localhost/php/lang/arrays4.php
= VIEW source

s http://localhost/php/lang/sort.php

= VIEW source

7/28/2004 BGA 118

http://localhost/php/lang/arrays2.php
http://localhost/php/lang/arrays2.php
http://localhost/php/lang/arrays3.php
http://localhost/php/lang/arrays3.php
http://localhost/php/lang/arrays4.php
http://localhost/php/lang/sort.php

i Example scripts (4)

= http://localhost/php/lang/testing.php
= VIEW source

s http://localhost/php/lang/comparison.php
= VIEW source

s http://localhost/php/lang/regexpl.php
= VIEW source

= http://localhost/php/lang/scoping.php

= VIEW source

7/28/2004 BGA 119

http://localhost/php/lang/testing.php
http://localhost/php/lang/testing.php
http://localhost/php/lang/comparison.php
http://localhost/php/lang/comparison.php
http://localhost/php/lang/regexp1.php
http://localhost/php/lang/scoping.php

i Example scripts (5)

s http://localhost/php/lang/loops.php
= VIEW source

s http://localhost/php/lang/functionsi.php
= VIEW source

= http://localhost/php/lang/trigtable.php
= VIEW source

s http://localhost/php/lang/write.php

= VIEW source

7/28/2004 BGA 120

http://localhost/php/lang/loops.php
http://localhost/php/lang/loops.php
http://localhost/php/lang/functions1.php
http://localhost/php/lang/functions1.php
http://localhost/php/lang/trigtable.php
http://localhost/php/lang/write.php

i Example scripts (6)

s http://localhost/php/lang/read.php
= VIEW source
= http://localhost/php/lang/append.php
= VIEW source
s http://localhost/php/lang/counter test.php

» View source (counter test.php)
» View source (counter.php)

7/28/2004 BGA 121

http://localhost/php/lang/read.php
http://localhost/php/lang/read.php
http://localhost/php/lang/append.php
http://localhost/php/lang/append.php
http://localhost/php/lang/counter_test.php

	COSC 2206 Internet Tools
	Introduction to PHP
	PHP Timeline
	Important PHP Features (1)
	Important PHP Features (2)
	Important PHP features (3)
	Version incompatibilities
	COSC 2206 Internet Tools
	Installing PHP for Win XP
	Getting PHP
	Getting PHP documentation
	php.ini configuration file
	Editing php.ini (1)
	Editing php.ini (2)
	Editing php.ini (3)
	Configuring Apache (1)
	Configuring Apache (2)
	Configuring Apache (3)
	PHP-Apache Integration
	Testing PHP
	Language Summary
	Where does PHP code go?
	8 Data Types
	Declaring Variables
	Naming conventions
	Constants
	Case sensitivity
	Three kinds of comments
	Literals and Strings
	Variable Interpolation (1)
	Variable Interpolation (2)
	Displaying strings (1)
	Displaying strings (2)
	Type casting
	Arithmetic
	What is false in PHP?
	Relational Operators
	Comparison operators
	Comparison of == and ===
	Conditional statements
	Testing variables
	empty / isset (from manual)
	Math functions (1)
	Math functions (2)
	COSC 2206 Internet Tools
	String interpolation
	String operations (1)
	String operations (2)
	String operations (3)
	HTML encoding
	Database encoding
	String comparison (1)
	String comparisons (2)
	Substrings, replacement
	Exploding a string
	Imploding a string
	Searching strings (1)
	Searching strings (2)
	COSC 2206 Internet Tools
	Regular expressions (1)
	Regular expressions (2)
	Regular expressions (3)
	Simple Reg Exp Examples (1)
	Simple Reg Exp Examples (2)
	Simple Reg Exp examples (3)
	Perl Regular Expressions
	Perl Reg Exp Example
	COSC 2206 Internet Tools
	Two types of arrays
	Creating indexed arrays
	Indexed arrays from ranges
	Indexed array list operation
	Indexed array slices
	Associative arrays
	Associative arrays as records
	Associative arrays of arrays
	Associative array keys
	Checking for key existence (1)
	Checking for key existence (2)
	array --> variables (extract)
	Array copy function
	searching arrays
	Sorting arrays (1)
	Sorting arrays (2)
	Sorting arrays (3)
	Other array functions
	The for loop
	The foreach loop (1)
	The foreach loop (2)
	The while loop
	How each works
	Loop iterator functions
	do while loop
	User-defined functions
	Variable scope
	Variable scope example
	static variables
	A max function
	Pass by value
	Pass by reference
	Variable number of args
	Including files (1)
	Including files (2)
	Classes and objects
	Writing lines to a file
	Reading lines from a file
	Other file operations (1)
	Other file operations (2)
	Other file operations (3)
	File Based Page Hit Counter
	counter_test.php
	counter.php (1)
	counter.php (2)
	counter.php (3)
	Example scripts
	Example scripts (1)
	Example scripts (2)
	Example scripts (3)
	Example scripts (4)
	Example scripts (5)
	Example scripts (6)

