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A b s t r a c t  

A novel non-numerical algorithm, based on a partial order, for solving a group rank- 
ing problem is compared with the more traditional consistency-driven approach. Both 
approaches are based on the fundamental  concept ofpairwise comparisons. Potential ap- 
plications are discussed. © 1998 Elsevier Science Inc. All rights reserved. 
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I. Introduction 

One of the basic problems of knowledge engineering is related to a team- 
work in which a knowledge engineer elicits knowledge from human experts, re- 
fines it with them, and represents it in the knowledge base. The knowledge may 
be, for example, expressed by assessing preferences of stimuli (e.g., criteria, fac- 
tors, or possible alternatives). When devising methods for formulating and as- 
sessing preferences, a knowledge engineer has to take into account the 
limitations in human capabilities for undertaking such an endeavour. 
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Formally, the problem can be formulated as follows (cf. [1,2]). Let us assume 
that there is a finite set X of objects (e.g., criteria or stimuli) and m experts, 
numbered 1 ,2 , . . . ,m .  Each expert i compares objects and constructs a 
non-empty weak order <iC_ X x X.  The problem of a group ranking is to define 
one group ranking, <gC_ X z X, which is a "compromise" based on all the in- 
dividual rankings IR = {<1 , . . . ,  <,,,}. It is possible that some of the individual 
rankings may collide with other individual rankings. The group ranking <g is 
expected to be a weak order but it should be somehow consistent with most (if 
not all) of the individual rankings IR. 

Various instances of  the above problem occur in the Social Choice Theory, 
Decision Making Process and Knowledge-Based Systems (see [2-4], and many 
others). Oddly enough there are not many diversified solutions to the group 
ranking problem. Arrow's Impossibility Theorem [2,3], says that under certain 
assumptions (known as Arrow's Axioms) the above problem has no general so- 
lution has been a deterrent in seeking any solution. Arrow's Axioms, perfectly 
proper in the framework of the Social Choice Theory (for which they were 
originally formulated [2]) are just too strong and restrictive for many other ap- 
plications. Nevertheless it had held back the branch of research based on other 
approaches (e.g., the concept of the weak order) for more than four decades. 
The recent paper [1] presents a range of fairly general solutions satisfying four 
of  the six Arrow's Axioms. They are in our opinion sufficient for a wide range 
of  applications. 

The approach of [1] starts with the observation that if IX] = 2 then a variety 
of solutions exists (for example, a simple majority voting, see [3]). This means 
that the problem can be reformulated as follows. Let R c X x X be a relation 
(called a ranking relation, [1]) such that xRy i f y  is preferred over x by the ex- 
perts. (We assume that for ~..,. = {x,y} the solution for finding the preference 
is known.) The problem is now reduced to the derivation of <g from R. The 
problem of finding a global ranking (or weights) on the basis of known local 
ranks (or relative weights) of  all pairs is called a pairwise comparisons method. 
It originates from Fechner (see [5]) and was formulated for the first time by 
Thurstone [6] and further enhanced by Saaty who proposed a hierarchical 
structure (see [7]) and a definition of  global inconsistency. The pairwise com- 
parisons method is based on a reasonable observation that while the precise 
ranking (weighting) of n objects over unqualified property is difficult (almost 
impossible for n > 7 where an appropriate hierarchy structure is assumed for 
larger n), it usually can be done with a respective precision for n = 2. The "tra- 
ditional" pairwise comparisons method ([6,7,4] and others) does not use partial 
orders. It uses real numbers and linear algebra instead (which in fact can be 
treated as a special case of a total order). It it worthwhile to note that the "tra- 
ditional" pairwise comparisons method does not satisfy Arrow's Axioms (see 
[2,3]) but it is quite popular in solving practical problems (see [8]). For  other 
approaches (that are not based on the pairwise comparisons) for finding the 
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global ranking (e.g., a utility function), the reader is referred to [3]. In this pa- 
per we briefly describe the two above mentioned methods: traditional and weak 
orders based pairwise comparisons and compare them. 

2. An example of group ranking problem 

Let us consider seven objects (in this case criteria) X = {a, b, c, d, e,f,g}, 
four experts, and their individual rankings IR = {<l, <2, <3, <4} (provided 
by Table 1). 

The individual rankings <i are, respectively, represented by the following 
step-sequences: 

{a}{b}{f}{cI{a}{e}{g}, 
{aI{e}{g}{a}{f}{e}{b}, 
{b}{e}{g}{a}{f}{c}{d}, 
{a}{f}{c, d, e}{g}{b}. 

We are tempted to solve the group ranking problem by simple totals in col- 
umns. We receive (12, 14,21, 17, 13, 17, 18, 17) for (a,b,c,d,e,f,g,h), respec- 
tively. It gives the following ranks (1,3, 8, 4-6, 2, 4-6, 7, 4-6) where 4-6 means 
a tie for ranks 4, 5, and 6. The above algorithm silently assumes that ordinal 
numbers 1 ,2 , . . . ,  n are corresponding weights for the first, second, etc. ranks 
which is not derived from any system of axioms or substantiated by any other 
logical or practical reason. A combined medal classification in Olympic Games, 
for example, is sometimes based on the following weights: 5 for gold, 3 for silver, 
2 for bronze, and 1 for the fourth place (weight 4 has not been used in the above 
rating). Weight 5 for gold and 3 for silver reflects our emotions that the gold 
medal is harder to win than the silver medal. Problems with ranking still exist 
even if we consciously assume ordinal numbers to be weights. Let us look at 
the expert number 4. He/she has ranked criteria c, d, and e equally and with less- 

Table 1 
Rankings provided by the individual experts 

Expert Criteria 

a b c d e f g 

1 l 2 4 5 6 3 7 
2 4 7 6 1 2 5 3 
3 4 1 6 7 2 5 3 
4 1 5 3 3 3 2 4 
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er importance than criterion a and f .  This, however, does not mean that criteria 
c, d, and e are ranked at the third place. In fact, we have to assume that criteria c, 
d, and e tie for the third, fourth, and fifth place unless there are compelling rea- 
sons to the contrary. This also means that the values assigned to criteria c, d, and 
e should be 4 (that is, (3 + 4 + 5)/3) rather than 3 and subsequent places for cri- 
teria g and b are 6 and 7 (please note that in the original Table 1 no criterion has 
been ranked as sixth or seventh according to expert 4). After making the above 
modification in Table 1 (that is substituting 3 with 4, 4 with 6, and 5 with 7 in the 
last row) we can see that the new column totals are (10, 17, 20, 17, 14, 15, 19). It 
gives new ranks (1,4-5, 7, 4-5, 2, 6) which are evidently different from the above. 
For example, criterion b jumped from the position 3 4  to 4-5, d, shares now po- 
sition 4-5 with b, and f is now in the third place. 

Clearly, weights expressing ranks cannot be fixed forever as ordinal numbers 
since these numbers may be differently assigned in case of  a tie. The weights 
must depend on a case. A silent assumption of  ordinal numbers for weights 
is not reasonable. Arrow's  Impossibility Theorem (see Section 3) is quite ex- 
plicit stating in [2,3] that under certain assumptions (known as Arrow's  Axi- 
oms) the above problem has no general solution. A similar problem exists 
with the individual experts. The "straight total" algorithm assumes again that 
the judgements of  all experts are equally important.  This simplification does 
not seem to be reasonable when we assume a different level of  expertise or 
knowledge for individual experts. 

In this paper two algorithms (both based on pairwise comparisons) for a 
group ranking will be analyzed: a non-numerical (based on a weak order ap- 
proach in [1]) and traditional pairwise comparisons (see [4]). Both approaches 
assume more relaxed assumptions than Arrow's  Axioms but provide construc- 
tive solutions. 

3. Weakly ordered pairwise comparisons 

Let us recall some basic concepts from [1]. A relation <c_ X x X is called a 
(sharp) partial order if it is irreflexive and transitive, i.e., if a < b ==~ b < a, and 
a < b < c = ~ a < c ,  for all a,b,  c E X .  We will write a ~ b  if ~ a < b A - , b <  
a A a ¢ b (where ~ denotes not), that is if a and b are distinct incomparable el- 
ements of  X. A partial order is: 
• total if ~ is empty, i.e., for all a ,b  C X. a < b Vb < a, 
• weak [9] i f a  ~ b ~ c: o :  a ~ c V a = c, i.e., i f ~  uidx is an equivalence rela- 

tion (idx is an identity on X). 
Evidently, every total order is weak. A wide and complete analysis of  axioms 

for preference and indifference relations is presented in [3]. It is worthwhile not- 
ing that in the majority of  cases the preference relation is just a weak order, 
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while indifference corresponds to ~ Uidx. The charm of  weak orders is that 
they can be represented uniquely by value functions (compare, for example, 
[3]). More formally, a partial order < c_ X x X is weak if and only if there is 
a total order <t C - Y x Y, and a mapping (value function) v : X ~ Y, such that 
a < b ¢==~ v(a) <t v(b). Weak orders can easily be represented by step-sequenc- 
es. For instance, if X = {a, b ,c ,d , e } ,  and v(a) = v(c) = O, v(e) = 2, v(b) = 
v(d) = 5, then the weak order < is uniquely represented by the step-sequence 
{a ,c}{e}{b ,d} .  

3.1. Ranking relation 

The first step in our approach is to define and construct a ranking relation. 
Let X be our set of  objects to be ranked and IR = { < j , . . . ,  <,,} be the set of  

individual (weakly ordered) rankings. By a (binary)  ranking relation over the 
set IR we mean any relation R C_ X x X satisfying the following constrains: 
• Vx, y E X :  [ { i l x < i y } [  >1 ] { i l y < i x } ]  ~ -~yRx, and 
• V x , y c X :  ( V i - - 1 , . . . , m :  x < i y ) ~ x R y ,  

where for every set A, IA] denotes the number of elements of  A. 
An obvious example of  a ranking relation is Rsmv , a simple majority voting 

relation, where 

xR~na~y ¢==~ I{i l x <~ y}l > I{i t y <~ x}l, 

i.e., xRsmvy if more experts preferred y over x. The relation Rsmv exists for every 
IR, and every ranking relation over IR satisfies R C_ Rsmv" Rsmv is not, however, 
the only ranking relation one may think of. I f  for instance, 10 experts would 
say x is better than y, and 11 just the opposite, the ranking that x and y are 
of  the same value seems to be the most appropriate in many cases (except 
for sports and politics!). 

In general, one would consider the value of 1{i [ x <i y } ] -  1{i ] y <i x}l to 
establish the relation between x and y. I f  it is "big",  we assume xRy. For 
"small"  or "very small", we would rather assume that ~xRy and ~y/Lv. Note  
that in both cases -~yRx. 

The second condition says that if all experts prefer y over x then the entire 
group does, so xRy. The relation R is always irreflexive, i.e., -~xRx. 

If, by chance, the relation R is a weak order, our goal has been achieved. Un- 
fortunately the relation R may not even be a partial order. The precise defini- 
tion of R depends on the specific properties of  the set X. 

Unanimity has a central place in ranking theory and practice. I f  every expert 
prefers y to x, then the group should prefer y to x (see Pareto's principle [3]). Let 
us define the relation <u C - X x X, as 

< u = < l  N . - . N  <m • 
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The relation <u will be called unanimous preference. Unanimous preference 
is always a partial order (since all <i are partial orders), although it is not nec- 
essarily a weak order. The following corollary follows immediately from the 
definition of <u and the second constraint on R. We require that the group 
ranking <g satisfies <uC_<g. 

3.2. Approximation of ranking relations by preference orders 

As we mentioned above, the ranking relation R may not be a partial order. 
Our goal is to find a relation <g which is not only a weak order but also "the 
best" approximation of R. This will be done in two steps. First we will find <u+, 
"the best" partial order approximation of  R. Next we will discuss various weak 
order approximations of  <u+. 

The problem is that the set X is believed to be partially ordered but the 
data acquisition process is so influenced by informational noise, imprecision, 
randomness, or expert ignorance, that the collected data R is only some rela- 
tion on X. We may say that R gives a fuzzy picture, and to focus it, we must 
do some pruning and/or extending. I f  R is not a partial order then either it is 
not reflexive, or it is not transitive, or both. Suppose that R is not transitive. 
This could be seen as a limitation of the discriminatory power of  the data 
acquisition process. Let us define the relation R+=[_J~_IR ~, where 
R~+J- - R ~ oR, and o denotes composition of  relations. Evidently R C_ R + 
and R + is transitive. I f  R is transitive, then R + =  R. The relation R + may 
not be irreflexive. I f  R + is not irreflexive, we have Sx,y E X. xR+yAyR+x. 
Such a situation could be interpreted as a side effect of  the data noise, uncer- 
tainty, randomness, etc. 

The relation <R+, defined as x <R- y ¢=~ xR+y A -~yR+x, will be called a par- 
tial order approximation of (ranking relation) R (see [1] for details). We have 
<e~ C_ R +, and if R + is irreflexive then R + = < e - .  

However, if R + is not irreflexive, it may happen that <u \ <e+ ¢ 0, so <u 
may be not included in <e+. 

Let us define <u_ as the smallest partial order satisfying the following con- 
straint: 

<U U <R+ C <R U . 

The relation <u+ will be called the proper partial order approximation of  the 
ranking relation R. I f  <U_<R+ then <R+=<U+. 

I f  <U+ is a weak order, we can set <g=<U+. The property 
Vx,y C X. x <g y: =~: ~yRx can be interpreted as a weaker version of  Arrow's  
Axiom of Binary Relevance (see [3] for details). 

I f  <u+ is not a weak order, we need to find a "good"  weak order approxi- 
mation. To do this we will follow the approach suggested in [9]. 
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Let us assume that set X is believed to be weakly ordered (by, for example, a 
group ranking relation <g) but the discriminatory power of the data acquisi- 
tion process, which seeks to uncover this order, is limited. For example, experts 
may not always know enough about the problem and may make educated 
guesses or even select choices at random, the number of  experts may be insuf- 
ficient, or instruments may not be precise enough, etc. The acquired data estab- 
lish only a partial order <p which is a partial picture of the underlying order. 
We seek, however, an extension process which is expected to identify correctly 
the ordered pairs that are not part of the data. To specify this problem in a for- 
mal way, we need a new concept. Let <pC_ X x X be a partial order defined as 
<p=<~+. Let us define ~pC_ X × X as follows: 

X ~ p y  ~ ( V z E X .  Z~pX~::=~z~'~py)  V x = y  

Various properties of ~p are analyzed in [9]. We need to recall only one here: a 
partial order <p is weak if and only if x ~p y ~ x ~p y v x = y. 

It is worthwhile noting that weak order extensions reflect the fact that if 
x ~p y then all reasonable methods for extending <p will have x equivalent to 
y in the extension since there is nothing in the data that distinguishes between 
them (for details see [9]). 

We will say that a weak order <w C - X x X is aproper weak order extension oJ 
<p is and only if: 

( X < p y ~ X < w y )  and ( X ~ p y ~ X ~ w y V x = y ) .  

If X is finite then for every partial order <p there always exists a proper 
weak extension. If <p is weak, then its only weak extension is <w = <p. If <p 
is not weak, there is usually more than one such extension. We will examine 
three of such extensions. Let vi: X ---, Integers, i = 1,2, 3, be the following (val- 
ue) functions for all x E X: 
(1) vl(x) =l {ylx <py} 1, 
(2) v2(x) =1 {Y [Y <p x} [, 
(3)  3(x)=l {ylx <py} I-  [{yly <px}l 
Let us define <wiC_ X x X, i = 1,2, 3, as follows: 
• Vx,y E X. x <w~ y e==~ us(x) < vi(y), if i = 1,3, and 
• Vx ,y  E Y.  x <w2 Y ¢==> v2 (x) > v2 (y),  
where < is the standard total order of integers. 

The weak order <w3 comes from [9], while Vwl and <w2 correspond to the 
left- and right-normal forms for partially commutative monoids (cf. [1]). More 
algorithms for finding various proper weak extensions are presented in [9]. The 
choice of an appropriate weak order extension depends on the problem consid- 
ered. If someone is looking for "the best objects", the order <wl seems to be the 
appropriate choice. For  locating "the troublemakers" (that is, for example 
controversial or extreme opinions), the order <w2 is more promising, while 
<w3 corresponds to "the safe opinions". 
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3.3. The weak order algorithm 

Let X be our set of objects and IR = {<~, . . . ,  <m} be a set of  individual 
rankings of  X. We propose the following algorithm for finding the group rank- 
ing <g. 
• Construct a ranking relation R over IR (as shown in Section 2), 
• construct the proper partial order of R as <~+ (as shown in Section 3), 
• if <~+ is a weak order then define a group ranking as <g= <~+, 
• otherwise <g= <w where <w is one of the proper weak order extensions of 

<~+. 
Let us now consider the example from Section 2. The ranking relation R (de- 

fined as a simple majority voting, R = Rsmv) for this example is illustrated in 
Fig. 1. The order <~+ is illustrated in Fig. 2. The value functions Vl(X), v2(x), 
and v3(x) applied to <~+ give weak orders <wl, <w2, and <w3, which are, re- 
spectively, represented by the following step-sequences: 

{a}{b,f}{c,d,e}{g}, 
{a}{f}{b,c,d,e}{b,g}, 
{a}{f}{b, c, d, e}{g}. 

Table 2 illustrates the three weak extensions of <Rv+ constructed in Fig. 2. We 
may define <g as <w,, i = 1,2, 3, or any other proper weak order extension of  
<~+. 

a 

b -1 

c -1 

d -1 

e 

f -1 

g 

a b c d e f g 

1 1 1 1 

-1 1 -1 

-1 

1 

-1 -1 

Fig. 1. Tabular  representation of  relation R derived from Table 1 (R is here the simple majority vot- 
ing, R = Rsmv);  aRb ~ 1 in row a and column b, - 1  in row b and column a. 
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a b 

Relation <~+ 

Fig. 2. Hasse diagrams of the relations <RU+. 
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Table 2 
Three weak extensions of the partial order <~+ in Fig. 2 

Rank v, (x) x v2(x) x v3(x) x 

1 0 a 7 a - 6  a 

2 1 b , f  5 f - 4  f 
3 2 c ,d ,e  1 e 1 c .e ,b ,d  
4 3 g 0 b 3 g 

The compliance of  the above algorithm with some of  the consistency rules 
proposed in [2] as well as necessary proofs are shown in [1]. 

4. Pairwise comparisons 

An n x n pairwise comparisons matrix is defined as a square matrix A = [aij] 
such that aij > 0 for every i , j  = 1, . . . ,  n. Each a o expresses a relative preference 
of  criterion (or stimulus) si over criterion sj for i , j  = 1 , . . . ,  n represented by 
numerical weights (positive real numbers) w~ and wj respectively. The quotients 
a~j = w ~ / w  / form a pairwise comparisons matrix 

ll a12 " " aln 

- -  1 • • a2n 

m = . . . 

• . 1 
a 2 n  
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A pairwise comparisons matrix A is called reciprocal if a,lj = 1/aft for every 
i , j  = 1, . . .  ,n (then automatically a i i=  1 for every i = 1 . . . .  ,n because they 
represent the relative ratio of a criterion against itself). A pairwise compari- 
sons matrix A is called consistent if ati • ajk = aik holds for every 
i , j , k  = 1 , . . . , n  since ( w J w j ) / ( w J w k )  is expected to be equal to wi/wh-. Al- 
though every consistent matrix is reciprocal, the converse is generally not 
true. In practice, comparing of s~ to s j, SJ to sk, and s~ to st, often results in 
inconsistency amongst the assessments in addition to their inaccuracy; how- 
ever, the inconsistency may be computed and used to improve the accuracy 
(for details, see [4]). 

The first step in pairwise comparisons is to establish the relative preference 
of  each combination of two criteria. A scale from 1 to 5 can be used to compare 
all criteria in pairs. (Values from the interval [½, 1] reflect inverse relationships 
between criteria since wi/wj = 1/(wj/wi).)  The consistency-driven approach is 
based on the reasonable assumption that by finding the most inconsistent 
judgements, one can then reconsider one's own assessments. This in turn con- 
tributes to the improvement ofjudgemental accuracy. Consistency analysis is a 
dynamic process which is assisted by the software. 

Saaty's theorem [7] states that for every n × n consistent matrix A = [aij] 
there exist positive real numbers w~ . . . .  , w,, (weights corresponding to criteria 
s l , . . .  ,sn) such that a(j = w~/w/ for  every i , j  = 1, . . .  ,n. According to [7], the 
weights wi are unique up to a multiplicative constant and the principal 
eigenvector corresponding to the largest eigenvalue of A provides weights 
wi which we wish to obtain from the set of preferences a~j. This is not the 
only possible solution to the weights problem. In the past, the least-squares 
solution was known, but it was far more computationally demanding than 
finding an eigenvector of  a matrix with positive elements. Later, a method 
of row geometric means was proposed, which is the simplest and the most 
effective method of finding weights. A statistical experiment [10] demonstrat- 
ed that the accuracy, that is, the distance from the original matrix A and the 
matrix A' reconstructed from weights with elements alj = [wi/w[], does not 
strongly depend on the method. There is, however, a strong relationship be- 
tween the accuracy and consistency. Consistency analysis is the main focus 
of  the consistency-driven approach. 

An important problem is how to begin the analysis. Assigning weights to all 
criteria (e.g., A = 18, B = 27, C = 20, D = 35) seems more natural than 
the above process. In fact it is a recommended practice to start with some ini- 
tial values. The above values yield the ratios: A / B  = 0.67, A / C  = 0.9, 
A/D = 0.51, B / C  -- 1.35, B/D = 0.77, C/D = 0.57. Upon analysis, these may 
look somewhat suspicious because all of them round to 1, which is of  equal 
or unknown importance. This effect frequently arises in practice, and experts 
are tempted to change the ratios by increasing some of  them and decreasing 
others (depending on the knowledge of the case). The changes usually cause 
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an increase of  inconsistency which, in turn, can be handled by the analysis be- 
cause it contributes to establishing more accurate and realistic weights. There is 
an increase in accuracy (in excess of  300%) demonstrated by a Monte Carlo ex- 
periment with bars of  randomly generated lengths [4]. 

We may assume the values show in Table 3 when we compare them in pairs 
for example in Table 1: 

T a b l e  3 

a b c d e f g 

a 1 5 -5 5 -5 __5 
4 3 2.5 2 1.5 

b 4 1 4 4 4 4 
3 2 .~ 2 I .-~ 

c ! _3 1 2 3_ ! 
5 4 2.5 2 1.5 

d 2 .~ 2.5 2 .~ 1 2 .~ 2 .~ 
5 4 3 2 1.5 

"~ ~ 2 2 2 e -- -- - - -  1 - -  5 4 3 2.5 1.5 

f 1.5 1.5 J.s ~.s 1 ._5 1 
J 5 4 3 2.5 "~ 

1 I 1 I I 1 
g 5 4 3 2 .~ 2 1 .-~ 

2._55 

L-5 

The arbitrarily assumed values presented in Table 3 are for illustration 
purpose only. In practice we start with values which can be based on sta- 
tistical research (e.g., questionnaire), group discussions, established by Del- 
phi method, etc. They are further refined by a consistency-driven analysis 
(see Section 5). We can compute the final weights by taking geometric 
means of  columns and normalizing them. In our case they are 26.32, 
21.05, 15.79, 13.16, 10.52, 7.89, and 5.26 (in fact they are quite round in 
an unnormalized form which we took as (5,4,3,2.5,2,1.5,1)  to simplify 
the computat ion of the quotients for the pairwise comparisons matrix). Af- 
ter substituting ordinal numbers by their respective weights in Table 1, we 
received the new ranking: (1 ,3~ , ,7 ,5 ,2 ,3 -4 ,6 )  which is different from the 
last ranking in Section 2, however (and only accidentally) equal to the first 
ranking. How come? The answer is evident. We received our ranking by 
comparing criteria in pairs. These local subjective comparisons are done 
with full consciousness and express our preferences. The global weights 
are computed on the basis of  the local preferences in an objective way. It 
is quite different. Let us see what happens when we alter our pairwise com- 
parisons table (Table 3) to Table 4: 
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T a b l e  4 
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a b c d e f g 

a 1 5 5 5 5 5 
3.5 3 2.5 2 1.5 1 

b 3.5 1 35 3.5 3.5 3.~ 3.~ 
5 3 2.5 2 1.5 I 

c 3 ! 1 £ ~ i 
5 3.5 2.5 2 1.5 l 

d 2.5 2.s 2.s 1 2.~ 2.~ 2.~ 
5 3.5 3 2 1.5 1 

e 2 ! 2 _2 1 ! . 2 
5 3.4 3 2.5 1.5 1 

f L5 J.5 1.5 ].~ ~,~ 1 J.5 
5 3.5 3 2.5 2 I 

1 1 I 1 I 1 1 
g 5 3.-5 5 2.~ 2 ].~ 

The new weights are (27.3, 18.92, 16.20, 13.52, 10.81,8.11,5.41) and the new 
ranking is (1,2-4, 7, 5, 2 4 ,  2-4, 6) which is different from any of  the previously 
computed rankings. 

5. Consistency analysis 

Consistency analysis is critical to the approach presented here because the 
solution accuracy of not-so-inconsistent  matrices strongly depends on the in- 
consistency [10]. The challenge to the pairwise comparisons method comes 
from a lack of consistency in the pairwise comparisons matrices which arises 
in practice. Given an n x n matrix A that is not consistent, the theory attempts 
to provide a consistent n x n matrix A' that differs from matrix A "as little as 
possible". Unlike the old eigenvalue-based inconsistency [7,4], the triad-based 
inconsistency (introduced in [4]) locates the most inconsistent triads. This al- 
lows the user to reconsider the assessments included in the most inconsistent 
triad. It has been shown [11] that the global inconsistency decreases with the 
reduction of the local inconsistency. It is fair to say that making comparative 
judgements of  rather intangible criteria (e.g., environmental pollution or public 
safety) results not only in imprecise knowledge, but also in inconsistency in our 
own judgements. In practice, inconsistent judgements are unavoidable when at 
least three factors are independently compared against each other. 

To illustrate the consistency-driven approach let us consider that assess- 
ments in Table 1 of our four experts (labeled A, B, C, and D) are not of equal 
importance but expressed by a pairwise comparisons matrix in Fig. 3. The pair- 
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Fig. 3. Process of  consistency improvement. 

wise comparisons method can be used to convert their relative importance into 
weights. Let us concentrate our attention on the ratios of the three experts: A, 
B, and C. The given estimates A/B = 1, B/C = 2, and A/C = 5 mean that the 
relative assessments of expert ,4 when compared with expert B is of  the same 
importance (reflected by the value of 1 on a scale 1-5), judgements of  expert's 
B have a relative importance of  2 when compared with C, and relative impor- 
tance of expert C is 5 when compared with expert A. Evidently something does 
not "add up" because (A/B) • (B/C) = 1 • 2 = 2, which obviously is not equal 
to 5 (that is, A/C). With an inconsistency index of 0.60, triad (A,B, C) (with 
"boxed" values of 1, 5, and 2) is the most inconsistent in the entire pairwise 
comparisons matrix (reciprocal values below the main diagonal are not shown 
in Fig. 3). A rash judgment may lead us to believe that A/C should indeed be 2, 
but we do not have any reason to reject the estimation of A/B as 2.5 or A/B as 
2. After correcting A/B from 1 to 2.5 (an arbitrary decision which is usually 
based on additional knowledge gathering), the next most inconsistent triad is 
(2, 2, 0.5) with an inconsistency index of 0.5. An adjustment of 2 to 1 makes this 
triad fully consistent (2- 0.5 is 1), but now another triad (2.5, 3, 1) has still an 
inconsistency of 0.17. By changing 3 to 2.5 the entire table becomes fully con- 
sistent. The corrections for real data are done on the basis of  professional ex- 
perience and knowledge of the case by examining all three involved criteria. 

An acceptable threshold of inconsistency is assumed to be 0.33 since it re- 
flexes a situation where the worst triad has a judgement which is not more than 
two grades of the assumed scale 1-5 (or their inverses: 1 to 1/5) apart from the 
remaining two judgments [4]. We could have stopped the inconsistency im- 
provement process after the third step in Fig. 3. There is no need to continue 
decreasing the inconsistency, as only a high value is harmful. A very small val- 
ue may indicate that the artificial data were entered hastily without reconsider- 
ation of former assessments. Step 4 in Fig. 3 has been done only for the 
purpose of illustration. 
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The weight received for the last pairwise comparisons matrix in Fig. 3 are: 
(0.5, 0.2, 0.2, 0.1). Using them to multiply weights corresponding to ranks given 
by experts are 91,2, 4, 5-6, 5 6, 3, 7). 

6. Conclusions 

Approximation of partial orders by weak orders is useful in knowledge- 
based systems because of the weak order extensions. Not  only are they easy 
to implement (usually a count of  elements satisfying some conditions) but flex- 
ible in terms of fitness to the situation such as stress on precision, cautiousness 
in making decision, reliability, or even hunt for extremes. 

The constructions presented above are independent of  the form of  R. They 
can be applied to any  (irreflexive) relation R C_ X x X. Hence, even if the def- 
inition of the ranking relation R would change, the results of  this  sec t ion  would 
hold. This is important  from the knowledge-based system viewpoint, since for 
some specific cases, the definitions of  the ranking relations may vary from what 
we have proposed in this paper. 

Under some circumstances it might be attractive to use a method that en- 
ables experts to express their priorities in a more refined way. The method of 
consistency-driven pairwise comparisons allows us to express local preferences 
and compute the global merit index which can be used for drawing the final 
conclusions. Consistency-driven pairwise comparisons method processes sub- 
jective assessments, therefore any final conclusion is also subjective but con- 
trolled by the consistency analysis. 
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