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Abstract 
Knowledge acquisition often requires the assessment 

of qualitative stimuli (e.g., criteria or priorities) such as 
public safety or the degree of environmental damage. 
Weights, reflecting the relative importance of the ob- 
jectives concerned are one of the most commonly used 
solutions for this kind of data. Subjective judgments in- 
volve inaccuracy (which is difficult to control) and con- 
sistency of judgments (which can be measured and used 
to influence the accuracy). The consistency-driven pair- 
wise comparisons method is based on an inconsistency 
index and its use as a validation technique. Knowledge 
acquisition using the consistency-driven pairwise com- 
parisons method, when supported by properly designed 
software, contributes to the improvement of the quality 
of knowledge-based systems. 

Keywords: knowIedge acquisition, knowledge vali- 
dation, consistency-driven pairwise comparison, multi- 
criteria evaluation, consistency, expert system. 

1 Knowledge Acquisition and Valida- 
tion 

Knowledge acquisition is the process of extract- 
ing, structuring and organizing knowledge from various 
sources of expertise. It may be defined as: the ati of 
bringing the principles and tools of Artijkial Intelligence 
research to bear on applications invobing dificult prob- 
lems that require knowledge of human experts for their 
solutions (see [3]). The technical issues of acquiring this 
knowledge, representing it, and using it appropriately 
to construct and expIain the lines-of-reasoning are im- 
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portant problems in the design of knowledge- based sys- 
tems. 

Knowledge acquisition is performed throughout the 
systems development life cycle (SDLC). Also during the 
entire SDLC, the knowIedge is validated and verified 
until its quality is acceptable for inclusion into a knowl- 
edge base. Knowledge is viewed as a collection of spe- 
cialized facts, procedures, and judgment rules collected 
from many sources. These sonrces can be divided into 
two types: documented and undocumented. The latter . 
resides in people’s minds. Knowledge can be identi- 
fied and collected by using any of the human senses. 
The multiplicity of sources and types of knowledge con- 
tributes to the complexity of knowledge acquisition. 

Transferring information from one person to another 
is diicult for several reasons. merts may lack time or 
be unwilling to cooperate. Testing and refining knowl- 
edge is complicated. Methods for knowledge elicita- 
tion might be poorly defined. System builders have a 
tendency to collect knowledge from a single source, al- 
though the relevant information may be scattered across 
several sources. Builders may attempt to collect doc- 
umented knowledge rather than use experts. Conse- 
quently, the knowledge collected may be incomplete 
and/or inaccurate. It is difficult to recognize specific 
knowledge when it is mixed with irrelevant data. 

. 

The basic model of knowledge engineering is based on 
teamwork in which a knowledge engineer mediates be- 
tween experts and the knowledge base. The knowledge 
engineer elicits knowledge from experts, refines it with 
them, and represents it in the knowledge base. The elic- 
itation of knowledge from experts can be done manually 
or with the aid of computers. 

The knowledge may be expressed, for example, by as- . 
sessing preferences of stimuli (e.g., criteria, factors, or 
possible alternatives). When devismg methods for for- 
mulating and assessing preferences, a knowledge engi- 
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neer has to take into account the limitations in human 
capabihties for undertaking such an endeavour. One 
possible technique for extracting the expert’s knowledge 
and preferences is based on the consistency-driven pai- 
wise comparisons method. 

2 Basic Concepts of Pairwise Co&par- 
isons 

The use of the consistency-driven pairwise compar- 
isons method for knowledge acquisition and consistency- 
driven knowledge validation is proposed. The pairwiie 
comparisons method (aIso known as paired compar- 
isons) was introduced in embryonic form by Fechner {see 
[4]). After considerable extension it was formalized by 
Thurstone (see [14]). In I977 Saaty (1121) transformed 
the pairwise comparisons method to a useful tool by 
adding hierarchical structures (for larger n, the O(n2) 
complexity was a problem). The consistency-driven ex- 
tension to the traditional pairwise comparisons method 
is baaed on the new definition of inconsistency [see [7] 
and most recently IS]). 

This paper wiil demonstrate the consistency-driven 
pairwise comparisons method as a powerful knowledge 
acquisition technique in knowledge-based systems and 
data mining. The consistency-driven pairwise wmpar- 
isons method processes statements expressed by experts 
about preferences and judgments. These statements are 
aligned to pairs of criteria or object&s. Assessments 
provided by experts are mapped into a numericai scale 
(see Table 1) for easier processing. Ordinal numbers are 
used to express relative preferences. It is necessary to 
stress that these numbers do not represent “an abso- 
lute” measure of the mapped stimuli since such a mea- 
sure may not exist. For example, it is hard to define a 
standard measure for public safety but, it is stilI prac- 
tical to relate it to environmental pollution for a given 
case or project. 

Input data are arranged in a pairwise wmparisons 
matrix A = [aij], whose elements represent the intensi- 
ties of an expert’s preference between individual pairs 
of alternatives or criteria chosen from a given scale (in 
our case it is from 1 to 5). 

A n x n pairwise comparisons matrix is thus defined 
as a square matrix A = [oij] such that oij > 9 for every 
i,j=l,..., n. Each oij expresses a relative preference 
of stimulus (or criterion) si over stimulus Sj for i, j = 
1 , . , . , n represented by numerical weights {positive real 
numbers) UQ and wj respectively. The quotients a+j = 
2 form a pairwise comparisons matrix 1 

1 aI2 - - - aIn 
1 1 . . . a2n 

A=?. . : . * - . * . . 
1 1 .*. 1 
a1n mm 

iitensity 
)f 
:mpor- 
;ance 

1 

2 

3 

4 

5 

1.5, 3.1, 
. . . . etc. 

Table 1: Comparisons scale 
Definition Explanation 

Equal or Two criteria con- 
unknown tributed equally to 
importance the objective or it is 

impossible to assess it 
Moderate im- Experience and judg- 
portance of one ments slightly favour 
over another one stimulus ovm 

Essential 
another 

or Experience and judg- 
strong ments strongly favour 
importance one stimulus over 

another 
Demonstrated One stimulus 
or strong is strongly favoured 
importance and its dominance 

is demonstrated in 
practice 

Absolute 1 The evidence favour- 
importance 

Intermediate 

ing one stimulus over 
another is of the high- 
est possible order of 
affirmation 
when compromise is 

iTr!tkF j needed 

A pairwise comparisons matrix A is called reciprocal 
if Uij = & for every i, j = 1,‘. , , n (then automati- 
cally aii = 1 for every i = 1,. . . ,n which represents tho 
relative ratio of a stimulus with itself). A pairwise com- 
parisons matrix A is called consistent if a;$ 0 ajk = aik 
holds for every i, j, k = 1,. . . , n since 52 is expected 
to be equal to 2. Although every consistent matrix is 
reciprocal, the converse is generally not true. In prac- 
tice, comparing Si t0 Sj, Si t0 Sk, and St t0 Sk Ofh?Il 

results in inconsistency amongst the assessments in ad- 
dition to their inaccuracy; however, the inconsistency 
may be computed and used to improve the accuracy 
since we can locate the most inconsistent judgements. 

The first step in pairwise comparisons is to establish 
the relative preference of each combination of two crite- 
ria. A scale of an appropriate granularity can be used to 
compare all criteria in pairs. (We are using values from 
[I, 5]; values from the interval 12, l] reflect inverse rela- 
tionships between criteria since 5 = &). It has been 

shown ([15]) that all reasonable scales i:e equivalent for 
a small enough inwnsistencj. The consistency-driven 
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approach is based on the reasonable assumption that 
finding the most inconsistent judgements may lead to a 
reconsideration of judgements. This in turn contributes 
to the improvement of assessment accuracy. Consis- 
tency analysis is a dynamic process which is assisted 
by software. 

Saaty’s theorem ([12]) states that for every n by n 
consistent matrix A = [au] there exist positive real 
numbers ‘u11, . . , w,, (weights corresponding to criteria 
~1,. . . ,s,,) such that aij = wi/wj for every i, j = 
1 ,“‘, n. The weights wi are unique up to a multiplica- 
tive constant and are the components of the principal 
eigenvector corresponding to the largest eigenvalue of 
A. Saaty’s eigenvector method is one of several tech- 
niques for computing the weights. They can also be 
computed by the least-squares-method (LSM) and the 
logarithmic-least-square-method (LLSM, also known as 
the method of row geometric means, GM). In fact, GM 
is the simplest and most effective method. A Monte 
Carlo experiment ([5]) demonstrated that the accuracy, 
that is, the distance from the original matrix A to the 
matrix A’ reconstructed from weights with elements 
a!. = [wi/wj], d oes not depend strongly on the method. 
T!rere is, however, a strong relationship between the 
accuracy of the weights and the inconsistency of the 
pairwise comparisons matrix. The main focus of the 
consistency-driven approach is consistency analysis. 

3 Consistency Analysis 
Consistency analysis is critical to the approach pre 

sented here because the accuracy of the weights com- 
puted for not-so-inconsistent matrices depends strongly 
on the inconsistency ([5]). Thii makes the consistency- 
driven approach the next step in the development of 
the pairwise comparisons method. Assessing intangi- 
ble stimuli (e.g., the degree of an environmental hazard 
or pollution factors) involves not only imprecise or in- 
exact knowledge but also the inconsistency in our own 
judgments. The improvement of knowledge elicitation 
by controlling the inconsistency of experts’ judgments 
is not only desirable but necessary. 

Checking consistency in the consistency-driven pair- 
wise comparisons method can be compared to checking 
that the divisor is not equal to 0. It does not make 
mathematical sense to divide anything by 0. The clas- 
sical pairwise comparisons method is based on the as- 
sumption that the given reciprocal matrix is consistent 
(see [12]). Why can we simply assume that the recipro- 
cal matrix is fully consistent? Requesting all the judg- 
ments to be consistent is not realistic since we wish to 
manage judgements which are subjective, inaccurate, 
and nearly always contain some kind of bias and im- 
precision. The inconsistency in subjective judgements 
is not unexpected. In fact it may even be perceived as 
a desirable indication that the data truly reflect reality 
(as opposed to data that have been ‘doctored’). 

93 

Given an n x n matrix A that is not consistent, the 
pair-wise comparisons method attempts to provide a 
consistent n x n matrix A’ that differs from the matrix 
A %s little as possible”. 

The definition of a global inconsistency of a pairwise 
comparisons matrix A introduced by Saaty (see [12]) is 
based on eigenvalues and is given by the formula: 

Xn-order A) 
cf = (order(a)-l):.,d., 

where X is the largest eigenvalue of the reciprocal matrix 
A. 

The above formula leads to some theoretical problems 
(see: [13] and 171). First of all, cf depends on the factor 
x ranhm (the mean value of the largest eigenvalues of 
a certain arbitrary number of randomly generated re- 
ciprocal matrices) which may vary. Factor cf is also 
not a reliable discernibility index since it changes fast 
for small deviations of matrix elements in some cases). 
The biggest deficiency of the eigenvalue-based inconsis- 
tency index is its inability to locate the most inconsis- 
tent elements in the matrix since cf is a global matrix 
characteristic (a just scaled eigenvalue). An improved 
definition of inconsistency (see [7]) is based on triads of 
the elements of the comparisons matrix A, which are 
associated by the consistency relation. A pairwise com- 
parisons matrix of order 3 is reduced to the following 
basic reciprocal matrix: 

1 a b 
A3= ; l’c 

1 1 7; c 
where a expresses an expert’s relative preference of stim- 
ulus si, Over Sj, b expresses a preference of stimulus Si, 
over Sk, and c is a relative preference of stimulus Sj 

over stimulus Sk. Matrix A3 is consistent if, and only if, 
b = ac. For inconsistent matrices b # ac and the degree 
of deviation from the nearest basic consistent reciprocal 
matrix yields an inconsistency index. This intuitive ob- 
servation is the basis for the new definition of inconsis- 
tency. A matrix A3 can be reduced to a vector of three 
coordinates [a, b,c]. We know that b = ac holds for 
each consistent reciprocal matrix. Therefore, we can al- 
ways produce three consistent reciprocal matrices (that 
is three vectors) by computing one coordinate from the 
combination of the remaining two coordinates. These 
three vectors are: [z, b, c], [a, ac, c], and [a, b, i]. The 
new inconsistency index (1x) can be defined as the rela- 
tive distance to the nearest consistent reciprocal matrix 
represented by one of these three vectors for a given 
metric (see [7]). The inconsistency index of the basic 
reciprocal matrix A3 is thus equal to: 

1x=min Ic-iI la-ii, lb-acl 
a T--‘--T--- ) 

(1) 

. 

a 

‘? 

, 

, 

: 
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Note that the inconsistency 1z index is not a metric. 
It is a matrix characteristic comparable (in nature) to 
entropy for a probabilistic sample space. The above 
definition is extended (see [Zj) to reciprocal matrices of 
any order as 

lx = min(I1 - -$/I - 71) for each triad (a, b, c) (2) 

It is natural to use the inconsistency index of a corn- 
parisons matrix as a measure of the validity of the 
knowledge. To “improve” the quality of the knowledge, 
experts, with the heIp of software, compute the incon- 
sistency of their judgments. A computer program high- 
lights the triad with the largest inconsistency. Obvi- 
ously the system does not force experts to change their 
judgments. Instead, the computer program ffags the 
most critical spot in the set of judgments. 

&like the old eigenvaluebssed inconsistency ([12, 
7]), the triad-based inconsistency index can be used to 
locate the most inconsistent triads which allows the ex- 
pert to reconsider the assessments included in the most 
inconsistent triad. It has been shown ([S]) that the 
global inconsistency decreases when the locd inconsis- 
tency is systematically decreased. 

An important consideration is how to begin the anal- 
ysis. Assigning weights to all criteria (e.g., A = 18, 
B = 27, C = 20, D = 35) seems more natu- 
ral than the above process. In fact it is even a recom- 
mended practice to start with some initial values. The 
above values yield the ratios: A/B = 0.67, A/C = 0.9, 
A/D = 0.51, B/C = 1.35, B/D = 0.77, C/D = 0.57. 
Upon analysis, these may look somewhat suspicious be 
cause all of them round to 1, the value for equal or un- 
known importance. This effect frequently arises in prac- 
tice, and experts are tempted to change the ratios by 
increasing some of them and decreasing others (depend- 

Gng on their knowledge of the case). The changes usu- 
ally cause an increase in inconsistency which, in turn, 
can be handled by the consistency analysis to establish 
more accurate and realistic weights. The pairwise com- 
parisons method requires evaluation of ali combinations 
of pairs of criteria, and can be tim+consuming because 
the number of comparisons depends on n2 (the square of 
the number of criteria). There is, however, an improve- 
ment in accuracy (over 3OO%), as was demonstrated by 
a Monte Carlo experiment with bars of randomly gen- 
erated lengths ([S]). The complexity problem has been 
addressed and partly solved by the introduction of hier- 
archical structures ([12]). Dividing criteria into smaller 
groups is a practical solution in cases where the number 
of criteria is large. 

It is fair to say that making comparative judgements 
of rather intangible criteria (e.g., environmental pollu- 
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tion or public satisfaction) results not only in impre- 
cise knowledge, but also in inconsistency in our own 
judgements. In practice, inconsistent judgements are 
unavoidable when at least three factors are indepon- 
dently compared against each other. 

For example, let us look closely at the ratios of tha 
four criteria: A, B, C, and D in Figure 2. Supposo 
we estimate ratios A/B as 2, B/C as 3, and A/C as 6. 
Evidently something does not ‘add up” because (A/B) l 

(B/C) = 2.3 = 6, which obviously is not equal to 5 (that 
is, A/C). With an inconsistency index of 0.17, the above 
described triad (with “‘boxed” values of 2, 5, and 3) is 
the most inconsistent in the entire matrix (reciprocal 
values below the main diagonal are not shown in Figure 
2). A rash judgment may Iead us to believe that A/C 
should indeed be 6, but we do not have any a priori 
reason to reject the estimation of B/C as 2.5 or A/B ns 
5/3. After correcting B/C from 3 to 2.5 {an arbitrary 
decision which is usually based on additional knowledge 
gathering), the next most inconsistent triad is (5,4,0.7) 
with an inconsistency index of 0.13. An adjustment of 
0.7 to 0.8 makes thii triad fully consistent (5 ’ 0.8 is 4), 
but another triad (2.5,1.9,&g) has an inconsistency of 
0.05. By changing 1.9 to 2 the entire table becomes 
fully consistent. The corrections for real data are dono 
on the basis of professional experience and knowledge 
of the case by examining all three involved criteria. 

An acceptabIe thre&oId of inconsistency is 0.33 be- 
cause it means that one judgement is not more than 
two grades of the scale (according to Table 1) ‘&differ- 
ent” from the remaining two judgments ([7]). There 
is no need to continue decreasing the inconsistency, as 
only a high value is harmful. A very small value may 
indicate that artif?cial data were entered hastily without 
reconsideration of former assessments. 

IA B C D 1 IA B C D 1 

q  2 5 

I 1 3 
1 

4 
1.9 
0.7 
1 

LB c DI 

Al2 5 4 125 4 
B 1 12.51 

1 
El 1.9 1 2.5 2 

c 0.8 1 0.8 
D 1 1 

12mp-J 
1 2.5 1.9 

IAB C DI 

Figure 2. Process of consistency improvement, 

4 Orthogonal projections 
Algorithms for reducing the triad inconsistency in 

pairwise comparisons can be improved by orthogonal 
projections ([lo]). The solution of a system of n - 2 lin- 



ear equations produces the following orthogonal basis 
matrices Tk = [t$] where 

-$j& for i<k=j 
1 

n-k+1 if i<k<j<n 
t& = 1 if i=k<j<n 

-t$ if tij#Oandj<i 
0 otherwise 

This is equivalent to the following simpler non-recursive 
definition: 

Tk=Bk- n”;:lBw 

where Bo is a matrix with all zero elements. 

The matrices BI; = [l&l (for details see Appendii A)are 
given by 

1 if l<i<k<jSn 
-1 if l<j<k<iln 

0 otherwise 

The orthogonal basis for the case n = 4 is 

0 111 

Tl = 
-10 0 0 
-10 0 0 
-10 0 0 

T2 = 

T3 = 

Fig. 1. An example of an orthogonal basis for n = 4 

Using formula (3), for an arbitrary n one can produce 
the n - 1 matrices Tk, which constitute an orthogonal 
basis for the space L. Once the matrices Tk are deter- 
mined, we may compute the following values for a given 
matrix A’ (note that the operation . is a dot product, 
not a regular matrix product) 

t = Tk *A’ k ,Tk,2 fork=l,...,n-I whereA’=logA 

(4 
The triad-based consistent approximation to the ma- 

trix A is then given by 

C=expC’ 

where c = c;!; tkTk. 

5 Conclusions 
Finding an ideal vector of weights for inconsistent (or 

very inconsistent) matrices is a mirage. While it may be 
a theoretically challenging task, it does not have much 
practicality. It could be compared to an attempt at 
Snding the lengths of objects using a ruler whose length 
changes randomly (because of, for example, tempera- 
ture variations>. The truth is that no “ideal” solution 
exists and understanding the true source of our prob- 
lem, that is the inconsistency of judgments, is absolutely 
necessary for decreasing the inaccuracy. It is difficult to 
change the inconsistency without knowing the location 
of the most inconsistent matrix elements when only its 
value is known. The new definition of inconsistency lo- 
cates them and experts are given necessary feedback and 
an opportunity to reconsider their judgments by using 
various approaches (e.g., Delphi method). 

The Monte Carlo experiment with bars of randomly 
generated lengths showed a 300% improvement in accu- 
racy in the estimation of their lengths by using pairwise 
comparisons. In the first part of the experiment, rcs 
spondents were asked to estimate the lengths directly, 
whereas in the second part, respondents were asked to 
‘do the same by comparing bars in pairs. An improve- 
ment from about 15% error to 5% error was observed 
and verified statistically ([8]). 

Appendix A. The derivation of the or- 
thogonal basis 

Formula (3) can be obtained as follows. Given matri- 
ces BI,&, . . . , B,+I, find Bi , B& . . . , Bk-, which are 
pairwise orthogonal and satisfy the following system of 
equations 

B; = BI 
B; = alzB1 + B2 
Bi = al3Bl + a23B2 + B3 
Bi = al4Bl-t a24B2 + a34B3 
..l*..........f*.........*~...............~.. 
Bk-, = al+--1Bl+ az,,+lBz + . . . + B,-1 

The following properties of the above basis are helpful 
in the normaliiation 

Multiply the second equation by B1 (dot-product) 

0 = BiBl = a12Bz + B2B1 = a122(n - 1) + 2(n - 2) 

hence 

n-2 
a12 = -- 

n-l 
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Multiply the third equation by Br and by 32 (dot- 
product) 

0 = 23g31 = a13Bf + a2&& + B&4 = 

a132(n - 1) + u~s2(n - 2) -I- 2(n - 3) 

0 = && = al3BlB2 + a&?; + && = 

ars2(n - 2) -I- a232 * 2[n - 2) -I- 2 * 2(n - 3) 

Solving that system of two equations, we get a13 = 0 
and a23 = -5 
Let us consider the equation for 34. Multiplying it by 
&, B2, B3 we get 

0 = B$l= al& + a24B2& + a34B3& i- B4& = 

a&?(n - 1) f asa2(n - 2) + as42(n - 3) + 2{n - 4) 

O=B&B:!= al,Bl& + a&; + a3483B2 + B432 = 

a142(n-2)+u~2*2(n-2)-!-a3~2*2(n-3)+2*2(n-4) 

0 = B;B3 = q4B1B3 + (3248233 + a34B; + B4B3 = 

From the first two equations we caIcuIate that a14 = 0. 
From the second and third, after substituting 0 for ~14, 
we cdcuiate a24 = 0 and then a34 = -3. Simile 

patterns may be observed when the k-th equation is 
multiplied by vector-matrices & , . . . , &-I. From these 
k - 1 equations, we can see that ali eik are equal to 
0 except r&-l& = 
formuia (3). 

-a which is the coe&dent in 

Boose, J.H., A Survey of Knowledge Acquisition 
Techniques and Tools. Knowledge Acquisition 1, 
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