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Abstract This study presents theoretical proof and empirical evidence of the re-
duction algorithm convergence for the distance-based inconsistency in pairwise
comparisons. Our empirical research shows that the convergence very quick. It
usually takes less than 10 reductions to bring the inconsistency of the pairwise
comparisons matrix below the assumed threshold of 1/3 (sufficient for most appli-
cations). We believe that this is the first Monte Carlo study demonstrating such
results for the convergence speed of inconsistency reduction in pairwise compar-
isons.

Keywords pairwise comparisons · distance-based inconsistency · convergence ·
knowledge management

1 Introduction

Pairwise comparisons (PC) allow us to express preferences more easily and more
accurately. These preferences can be highly subjective (e.g., likes/dislikes). Pair-
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wise comparisons were most likely used even before numbers were invented. We
can easily envision that “weighting” took place during the Stone Age to decide
if a fish, in one hand, can be bartered for a bird in another hand. So, it may be
one of the oldest scientific methods ever used. Ramon Llull was given credits for
discovering the Borda count and Condorcet criterion (Llull winner) in the 13th
century after the discovery of his lost manuscripts Ars notandi, Ars eleccionis,
and Alia ars eleccionis, in 2001. However, Condorcet published his voting method
based on pairwise comparisons in 1785 in [2] and it is generally assumed to be the
first documented use of this method. The next formal use of pairwise comparisons
is traced to Fechner in 1860 (see [4]).

It is worth stressing the binary nature of pairwise comparisons. Similarly to
binary numbers, pairwise comparisons are practically irreducible since comparing
one object with itself is not really creative. Empirical software engineering often
relies on pairwise comparisons (e.g., the bubble sort) without realizing of their use.
In fact, every Ω < condition > then . . . else . . . construct is a pair of actions
to be selected on the basis of the < condtion >. So, pairwise comparisons are at
the foundations of computer science but using them has been intuitive.

The distance-based inconsistency was introduced in [11]. Its convergence was
analyzed in [9]. As a practically “side product”, [9] also provided a proof that
limit of the inconsistency reduction is a vector of geometric means. Our results
confirm it. This result is of considerable practical importance since inconsistency
in pairwise comparisons is undesirable. Reducing it in a systematic sequence of
steps is needed for improving the accuracy of data. The distance-based inconsis-
tency was independently analyzed in [1] by practical experimentations. The above
publication also stressed that only the distance-based inconsistency localizes the
inconsistencies. In [12], a mathematical (existential) proof of convergence has been
provided for the distance-based inconsistency. We also need to point that only op-
timization methods can approximate the given matrix for the assumed norm (e.g.,
LSM for the Euclidean distance), was recently proposed in [6]) with the new in-
consistency indicator. No empirical study has ever been done and this is the first
publication showing how rapid this convergence is in practice. Sometimes, the in-
consistency indicator is called a “measure” but it is obviously not a measure in
the sense of the mathematical theory.

2 The inconsistency reduction

A distance-based adjective has been used by other researchers for the new inconsis-
tency introduced in 1993 in [11]. The distance-based adjective reflects the nature
of the inconsistency indicator, which is defined as a minimal distance from the
nearest consistent triad in a a pairwise comparisons matrix (PC matrix) A defined
as:

A =


1 a12 · · · a1n
1

a12
1 · · · a2n

...
...

...
...

1
a1n

1
a2n
· · · 1


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The inconsistency was studied intensively in the past in [5, 8, 10]. The con-
sistency condition aij = aik · akj was analyzed in [10] where it was probably
introduced for the first time. Assuming that aik, akj , aij represent ratios of entities
Ei/Ek, Ek/Ej , Ei/Ej , the consistency condition simply states that:

Ei

Ej
=

Ei

Ek
· Ek

Ej

According to [14]: “We may assume that when the inconsistency indicator
shows the perturbations from consistency are large, the result is unreliable and the
information available cannot be used to derive a reliable answer.” Unfortunately,
the eigenvalue-based inconsistency definition, provided by Saaty in [14], tolerates
an approximation error of any arbitrarily large value. It was evidenced by two
counter-examples and mathematical reasoning in [13] where a simple axiomatiza-
tion for constructing inconsistency indicators, independent of any approximation
method, was proposed.

In data and knowledge processing, the importance of inconsistency analysis is
expressed by the popular adage GIGO (garbage in – garbage out). GIGO summa-
rizes well what has been known for a long time: processing “dirty data” cannot
guarantee meaningful results. The distance-based inconsistency allows us to lo-
calize the most inconsistent triad (or triads). It is the maximum of all triads
(aik, aij , akj) of elements of A (say, with all indexes i,j,k distinct) of their incon-
sistency indicators, which in turn are defined as:

ii = min(|1−
aij

aikakj
|, |1−

aikakj
aij

|) . (1)

It has been recently simplified to:

ii = 1−min(
aij

aikakj
,
aikakj
aij

) . (2)

For a triad (x, y, z), the pseudocode is even simpler:

ii = 1−min(xz/y, y/x/z) . (3)

where x > 0, y > 0, z and ii = 0 for y = xz

When a triad (x, y, z) with the maximal inconsistency localized, we modify
values of x, y, or z to make the replaced triad consistent. This method was first
described in [11], extended in [3], analyzed [12] and finally simplified in [13]. The
inconsistency axiomatization is proposed in [13].

2.1 The convergence of the triad reduction method

To show the method more explicitly, let us consider instead of each matrix:

A =


1 a12 · · · a1n
1

a12
1 · · · a2n

...
...

...
...

1
a1n

1
a2n
· · · 1


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the skew symmetric matrix

logA =


0 log a12 · · · log a1n

− log a12 0 · · · log a2n
...

...
...

...
− log a1n − log a2n · · · 0


Denote by M(aik, aij , akj) the set of logarithms of all matrices which are con-

sistent with respect to a given triad (aik, aij , akj). It follows from the consistency
condition that M(aik, aij , akj) is a linear subspace of the space of all skew sym-
metric matrices. Moreover, the intersection of all such subspaces is equal to the
subspace of all skew symmetric matrices which are logarithms of consistent matri-
ces.

Consider a step of the algorithm which is, for a given triad (aik, aij , akj), an
orthogonal projection of logA onto M(aik, aij , akj) with respect to some inner
product.

Assume aikakj 6= aij . We are looking for a value v such that a new triad

ãik = (1 + v)aik, ãij = (1 + v)−1aij , ãkj = (1 + v)akj . (4)

is consistent It gives us:

(1 + v)3 =
aij

aikakj
, (5)

hence

1 + v = a
−1/3
ik a

−1/3
kj a

1/3
ij (6)

The above is equivalent to:

ãik = a
2/3
ik a

−1/3
kj a

1/3
ij ,

ãij = a
1/3
ik a

1/3
kj a

2/3
ij ,

ãkj = a
−1/3
ik a

2/3
kj a

1/3
ij ,

which is the same result as by the orthogonal projections.
Such algorithm applied sequentially to a sequence of triads is convergent, as

stated in [9] where the proof was incomplete. A complete proof was finally provided
in [12].

Let us notice that if v above is a small value (taking place for a relatively small
ii) then

(1 + v)−1 ≈ 1− v. (7)

Thus, we may replace ãij with aij given by formulas

aik = (1 + c)aik, aij = (1− c)aij , akj = (1 + c)akj . (8)

Then, consistency of this new triad leads us to a quadratic equation for c. The
particular formulas will be presented in the next subsection.
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On the other hand, from the consistency of this triad we get

(1 + c)2

1− c =
aij

aikakj
. (9)

Comparing (5) and (9), we obtain the equality

(1 + v)3 =
(1 + c)2

1− c (10)

Thus,

(1 + v)3 =
(1 + c)3

1− c2 > (1 + c)3.

If v > 0, then
0 < c < v. (11)

If −1 < v < 0, then from (10) we have

(1 + v)3 ≤ (1 + c)2.

From the Bernoulli inequality,

1 + c ≥ (1 + v)
3
2 ≥ 1 +

3

2
v,

which implies that

0 > c ≥ 3

2
v. (12)

From (11) and (12) we get

|c| ≤ 3

2
|v|,

which is precise form of the assertion (7). Hence, if we have two sequences vn,
cn connected by the equality (10), then the condition vn → 0 implies cn → 0.
By Theorem 1 of [9], the method of orthogonal projections is convergent which
implies vn → 0. Consequently, cn → 0 which means that the method of quadratic
equation is also convergent.

This theoretical proof of convergence of possibly infinite number of the triad
reduction is supported by the presented empirical experimentation.

2.2 The distance-based inconsistency reduction algorithm

Inconsistency analysis allows us to locate the most inconsistent triad. In practice,
we change only one value in a triad. Depending on the application, it may take
days or even weeks to call an expert panel, gather data, analyze it, and make a
decision about which value should be altered. In our experimentation, we modify
all three values: aik, akj , and aij . This is done by splitting the total modification to
three elements of a triad by minimizing the affect of the modification on the initial
PC matrix. For it, let us assume that the most inconsistent triad is (aik, aij , akj).
According to equation (1):

ii = 1−min(
aikakj

aij
,

aij

aikakj
)
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To make this triad consistent (ii = 0), three variables (let us say ∆ik,∆kj ,∆ij)
are added to each entry in this triad. The following equations can be obtained
when ∆ik,∆kj ,∆ij meet above requirements:

If aikakj < aij then

(aik +∆ik)(akj +∆kj) = (aij −∆ij), (13)

where values:

∆ik,∆kj ,∆ij

are positive.

If aikakj > aij then

(aik −∆ik)(akj −∆kj) = (aij +∆ij), (14)

where values:

∆ik,∆kj ,∆ij

are positive.
By assigning three values to ∆ik,∆kj and ∆ij respectively, the triad will be

fully consistent. We assign values to ∆ik,∆kj and ∆ij according to the formulas
Hence, we can come to the following:

∆ik = aikc, ∆kj = akjc, ∆ij = aijc (15)

where c is a positive constant.
By combining equations (13), (14) and (15), we can get the following quadratic
polynomials:

aikakjc
2 + (aij + 2aikakj)c+ aikakj − aij = 0, (16)

for aikakj < aij , and

aikakjc
2 − (aij + 2aikakj)c+ aikakj − aij = 0, (17)

for aikakj > aij .
By solving equations (16) and (17), c can be obtained and then all ∆ik,∆kj ,∆ij

can be determined. The discriminant for both equations is the same and is equal
to:

(aij + 2aikakj)
2 − 4(aikakj − aij)aikakj =

= a2ij + 8aijaikakj > 0,

and it implies that each of the both equations has exactly two solutions c1 and c2.
Furthermore, when aikakj < aij , from the Vieta’s formulas, the roots of equa-

tion (16) satisfy

c1c2 =
aikakj − aij
aikakj

< 0,
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which implies that only one of them is positive. In this case, we take the positive
root as the solution.

When aikakj > aij the product of roots of equation (17) is given by the same
formula, so it is positive. At the same time, again from the Vieta’s formulas,

c1 + c2 =
aij + 2aikakj

aikakj
> 0,

the above inequality and the positivity of the product imply that both of them
are positive. In this case we take the smaller value as the answer to this triad. If
we took the bigger one, aik −∆ik and akj −∆kj would be negative.

Our computations clearly indicate that the convergence takes place in fewer
steps than we have anticipated it. As such, it is “good enough” (also known as
“satisfying”) for practical applications of pairwise comparisons. As opposed to
optimal decisions, satisfying, a portmanteau of satisfy and suffice, is a decision-
making strategy that attempts to meet an acceptability threshold. In our case,
this threshold for inconsistency has been assumed (as a heuristic) to be 1/3. It
is worth noticing that “a satisfying strategy” may often be (near) optimal if the
costs of the decision-making process itself are considered as a part of the objective
function. By “costs”, we understand not the financial problem but “other aspects”
related to solving our decision problem. It may vary from obtaining the complete
information (usually, an impossible task) to assess the impact of our decision on
“public safety” or “public acceptance”.

2.3 An example of the quadratic inconsistency reduction

Let us assume we have a triad (4.2, 1.8, 0.7). This triad is inconsistent since 4.2·0.7 =
2.94 > 1.8. but aij = 2.94 makes this triad consistent. However, this may cause
bigger changes in other triads. After all, the change of aij from 1.8 to 2.94 is a
relatively significant change (nearly doubled). An improvement is expected by find-
ing the corresponding variables ∆ik,∆kj ,∆ij from this equation: (4.2−∆ik)(0.7−
∆kj) = (1.8 +∆ij)

Let us verify that values of ∆ik,∆kj ,∆ij are not significantly affecting another
triad (or triads). According to equation (14), we get:

∆ik = 4.2c ∆kj = 0.7c ∆ij = 1.8c

By solving this equation:

(4.2− 4.2c) · (0.7− 0.7c) = (1.8 + 1.8c)

we get c1 ' 2.454, c2 ' 0.158.

According to the earlier discussion, we take c2 as our solution. Therefore, we have:

∆ik = 0.66

∆kj = 0.11

∆ij = 0.28

hence:
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aik = 4.2− 0.66 = 3.54

akj = 0.7− 0.11 = 0.59

aij = 1.8 + 0.28 = 2.08

and the new triad is (3.54, 2.08, 0.59).

2.4 Not-so-inconsistent matrices

Using completely PC matrices for testing has very little scientific merits since they
are just random numbers and as such defy any principles of learning (machine or
natural). Common sense dictates the use of somehow inconsistent matrices but
not just a proverbial “bunch of random numbers”. We will call such a PC matrix
”not-so-inconsistent” (NSI) PC matrix. NSI matrix was defined in [7] as follows.
We obtain NSI PC matrix M from a random vector v with positive coordinates by:
M = [vi/vj ] where i, j = 1, 2, . . . , n. We deviate M randomly by random multipliers
mij := mij · rand().

Our computing results demonstrate that the quadratic inconsistency reduction
algorithm can efficiently reduce the global inconsistency of a “Not-so-inconsistent”
(NSI) PC matrix to a certain threshold value (1/3 is usually considered as the ac-
ceptable inconsistent level for most applications). NSI PC matrices are not totally
random. Totally random matrices have nothing in common with PC matrices. NSI
PC matrices are slightly deviated from what we call PC matrices. The initial PC
matrix is not expected to be fully consistent. Solving real-life problems usually
involves inconsistent assessments. However, a matrix with large inconsistency is
undesirable according to “garbage in, garbage out (GIGO)” principle. Inconsisten-
cies often reflect assessing “every criterion being more important than another”.

The concept of an NSI PC matrix was introduced in [7] by the first author of
this study. Monte Carlo experiments in [7] demonstrated (on the basis of 1,000,000
cases) no statistical difference between the geometric means and eigenvalue meth-
ods of computing weights. A randomly selected deviation was applied to elements
of a fully consistent matrix rendering it inconsistent. The same method is also
used in this study. For an inconsistency to occur, a minimum size of 3 for PC
matrix is required since at least one triad needs to exits. Needless to say that
for two comparisons, inaccuracy (not inconsistency) takes place. We use n = 7 as
the maximal PC matrix size. For a matrix with n elements, there are n(n − 1)/2
comparisons. It gives us 21 comparisons for n = 7 and it is a psychological limit
for most respondents to cooperate (we wonder who would agree to compare 100
objects giving 4950 pair combinations?)

3 The relationship of deviation and maximal inconsistency

We produce not-so-inconsistent (NSI) PC matrices by using a random deviation
∆ > 0. For ∆ = 0, the PC matrix, generated from a random vector with positive
coordinates, is fully consistent. By increasing ∆, the inconsistency of the PC ma-
trix is also expected to increase. In order to examine the relationship between ∆
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and maximal inconsistency, we follow this item:

1. Generate random PC matrices,
2. Adjust the deviation of each matrix from 0 to 0.5 with increasing 0.0005 each

iteration,
3. Record the maximal inconsistency of 1,000 matrices for each deviation,
4. Compute the average maximal inconsistency of 1,000 matrices for each devia-

tion.

The NSI PC matrix is obtained by:

1. Randomize a vector (say v with coordinates vi)
2. Generate the fully consistent PC matrix (say A) by aij = vi/vj .

Fig. 1 shows the histogram of inconsistency in a NSI PC matrix generated
by adding to each element of a consistent matrix a deviation randomly generated
from [0, 0.5]. It looks like a normal distribution.

Fig. 1 Histogram of Inconsistency
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Fig. 2 shows the result of the relation between deviation and inconsistency.

Fig. 2 Dependence of maximal inconsistency and the element deviation

As we can see from Fig. 2, the maximal inconsistency increases with the devi-
ation. It is nearly linear (but not quite) dependency for 1,000 generated NSI PC
matrices. The maximal inconsistency is still below 0.7, since the deviation was not
significantly high (between 0 and 0.5)

4 The quadratic inconsistency reduction

In order to test the convergence of quadratic inconsistency reduction method, we:

1. Generate random 7 by 7 NSI PC matrices as described above.
2. Add a random deviation for each entry in the upper PC matrix triangle.
3. Record the maximal inconsistency of each PC matrix.
4. Count the number of triads with the inconsistency larger than 1/3.
5. Count iterations needed to reduce the maximal inconsistency to a maximal

value of 1/3.
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Fig. 3 shows the histogram of numbers of iterations needed to reduce the incon-
sistency to equal or less than 1/3. To analyze the data in details, we compute the
average number of iterations for maximal inconsistency for each NSI PC matrix.

Fig. 3 Histogram showing the numbers of iterations needed to reduce the inconsistency to
not more than 1/3

The relationship between maximal inconsistency and average number of itera-
tions needed to bring the inconsistency under the required level of acceptance 1/3
is shown by Fig. 4. It is encouraging to see that not more than seven iterations
are needed.

Fig. 5 shows the the number of iterations needed to bring the inconsistency
under the required level of acceptance 1/3 for the given number of inconsistent
triads.

The statistical evidence shows that the number of iterations actually depends
more on the number of triads with an inconsistency larger than 1/3.

5 Conclusions

We have generated 1,000 NSI PC matrices with ranks ranging from 4 by 4 to 7 by
7. The convergence rate was rapid. Bringing matrices to an inconsistency below
1/3 takes place usually in no more than 10 iterations, for the worst randomly
generated case. The inconsistency reduction problem in pairwise comparisons is
one of the most fundamental problem. Simply, it is unreasonable to expect an
accurate output from an inaccurate input as the adage illustrates by: “garbage-in,
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Fig. 4 The number of iterations needed to bring the maximal inconsistency of the PC matrix
under 1/3

garbage-out” (GIGO). The inconsistency should be reduced whenever we are able
to do so and fortunately, it can be done in not so many steps. For this reason,
results of this study may be considered as essential for the PC research.
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