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Abstract

This study examines the notion of inconsistency in pairwise com-

parisons for providing an axiomatization for it. It also proposes two

inconsistency indicators for pairwise comparisons. The primary mo-

tivation for the inconsistency reduction is expressed by a computer

industry concept “garbage in, garbage out”. The quality of the out-

put depends on the quality of the input.
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1 Introduction

The method of pairwise comparisons (PC method here) is attributed to Fech-
ner (see [5]) as a formal scientific method although it was first mentioned by
Condorcet in [4] who only used it in its primitive form: win/loss. However,
Thurstone (see [19]) proposed what is known as “The Law of Comparative
Judgments” in 1927. In 1977, Saaty proposed his AHP method based on
modified pairwise comparisons with a hierarchy structure in [16]. In this
study, however, the hierarchy is not considered. It is also worth to note that

∗Computer Science, Laurentian University,Sudbury, Ontario P3E 2C6, Canada

wkoczkodaj@cs.laurentian.ca
†Institute of Mathematics, University of Wroclaw, Wroclaw, Poland,

szwarc2@gmail.com

1



in this study, we consider only the multiplicative PC which is based on “how

many times?”, while the additive version of pairwise comparisons (“by how
much...”)was recently analyzed in [21]. It has a different type of inconsistency
(not addressed here).

Saaty’s seminal study [16] had a profound impact on the pairwise com-
parisons research. However, his AHP should not be equalized with pairwise
comparisons, despite using them. The restrictions assumed by Saaty (e.g.,
fixed scale: 1 to 9) probably serves its proponent well for whatever purpose
he has designed it. However, it is a subset of the pairwise comparisons for
which no particular scale is assumed. A proof was provided in [6] that a
small scale (1 to 3) has desired mathematical properties for the use in pair-
wise comparisons.

Regretfully, pairwise comparisons theory is not as popular as in mathe-
matics, for example, partial differential equations, hence basic concepts need
to be presented in the next section but it is not PC method experts.

2 Pairwise comparisons basics

We define an N ×N pairwise comparison matrix simply as a square matrix
M = [mij ] such that mij > 0 for every i, j = 1, . . . , n. A pairwise comparison
matrix M is called reciprocal if mij = 1

mji
for every i, j = 1, . . . , n (then

automatically mii = 1 for every i = 1, . . . , n). Let us assume that:

M =











1 m12 · · · m1n
1

m12
1 · · · m2n

...
...

...
...

1
m1n

1
m2n

· · · 1











where mij expresses a relative preference of entity (or stimuli) si over sj.
A pairwise comparison matrix M is called consistent (or transitive) if

mij ∗mjk = mik

for every i, j, k = 1, 2, . . . , n.

We will refer to it as a “consistency condition”. While every consistent
matrix is reciprocal, the converse is false in general. If the consistency con-
dition does not hold, the matrix is inconsistent (or intransitive).
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Consistent matrices correspond to the ideal situation in which there are
the exact values s1, . . . , sn for the stimuli. The quotients mij = si/sj then
form a consistent matrix. The vector s = [s1, . . . sn] is unique up to a multi-
plicative constant. The challenge of the pairwise comparisons method comes
from the lack of consistency of the pairwise comparisons matrices which arise
in practice (while as a rule, all the pairwise comparisons matrices are recipro-
cal). Given an N×N matrix M , which is not consistent, the theory attempts
to provide a consistent n×n matrix M which differs from matrix M “as little
as possible”.

The matrix: M = si/sj is consistent for all (even random) values vi. It
is an important observation since it implies that a problem of approximation
is really a problem of a norm selection and the distance minimization. For
the Euclidean norm, the vector of geometric means (equal to the principal
eigenvector for the transitive matrix) is the one which generates it. Needless
to say that only optimization methods can approximate the given matrix for
the assumed norm (e.g., LSM for the Euclidean distance, as recently proposed
in [8]). Such type of matrix is examined in [18] as “error-free” matrix.

It is unfortunate that the singular form “comparison” is sometimes used
considering that a minimum of three comparisons are needed for the method
to have a practical meaning. Comparing two entities (stimuli or properties)
in pairs is irreducible, since having one entity compared with itself gives
trivially 1. Comparing only two entities (2 by 2 PC matrix) does not involve
inconsistency. Entities and/or their properties are often called stimuli in the
PC research but are rarely used in applications.

3 The pairwise comparisons inconsistency no-

tion

[16] includes: “We may assume that when the inconsistency indicator shows
the perturbations from consistency are large and hence the result is unreli-
able, the information available cannot be used to derive a reliable answer.”

The above quotation is consistent with the popular computer adage GIGO
(garbage in – garbage out). GIGO summarizes what we have known for a
long time: getting good results from “dirty data” is unrealistic, and surely,
cannot be guaranteed. An approximation of a pairwise comparisons matrix
is meaningful if the inconsistency is acceptable. It can be done by localizing
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the inconsistency and reducing it to a certain predefined threshold. For the
time being, the inconsistency threshold is arbitrary or set by a heuristic, since
there is no theory to find it. It is a similar situation to p-value in statistics –
often assumed as 0.05 (or any other arbitrary value), but can be undermined
for each individual case.

As pointed out earlier, given an inconsistent matrix A, the theory at-
tempts to approximate it with a consistent matrix M that differs from ma-
trix A “as little as possible”. The consistency of a matrix A, expressed by
aij ∗ ajk = aik, was called in [16] a “cardinal consistency”. In this study, we
will use a term “triad” for (aij , aik, ajk) (these three matrix elements in the
above cardinal consistency condition).

Before we progress to a formal inconsistency definition, the most impor-
tant question needs to be explained: “where does the inconsistency come

from?” The short answer to this question is from the excess of input data.
The superfluous data comes from collecting data for all pairs combinations
which is n∗ (n−1)/2, while only n−1 proper comparisons (e.g., the first row
or column and even diagonals or some of their combinations) would suffice.
The inconsistency in a triad is illustrated by the following example.
Example:
This is an inconsistent matrix M , 3 by 3 with one triad (2, 2, 2), which is
marked by the bold font, is:

A =





1 2 2
1/2 1 2
1/2 1/2 1





Evidently, matrix A displays an abnormality since 2 ∗ 2 6= 2. The common
sense dictates that if for “every bar is two times longer than every other
bar”, all bars should be given equal length. However, the computed vector
of weight (si mentioned earlier in this section)is:

s = [0.4934, 0.3108, 0.1958]

Everything comes back to normality when we change a1,3 from 2 to 4.
Although this is a rather simple example, the proposed inconsistency reduc-
tion process comes to finding such a triad and changing an offending value
with the value which making the consistency condition to hold or at least to
have one side of the consistency condition close to the other side.
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Table 1 shows three triads consisting of matrix elements, which may not
be neighbors in this matrix. Different types of parenthesis have been used
for each triad, only for easier demonstration. All triads above the main
diagonal have the carpenter angle tool shape or the mirror image of the
capital letter “L”, with the middle value in the “elbow” element ideally (for
the consistency) being the product of the outer elements.

1 (1,3) (1,7)
1 [2,4] [2,6]

1 (3,7)
1 {4,5} [4,6] {4,7}

1 {5,7}
1

1

Table 1: PC matrix with various triads

Triads may have one overlapping matrix element. For example, i = 1,
j = 2, and k = 3 creates a triad with one element in the triad created by
i = 1, j = 3, and k = 7. According to the triad production expression:
(aij, aik, ajk), it is element a1,3. Evidently, triad elements do not need to be
neighbors in the matrix, but if they are, they must be just above the main
diagonal, as illustrated by Table 2.

1 (1,2) (1,3)
1 (2,3) (2,4)

1 (3,4) (3,5)
1 (4,5) (4,6)

1 (5,6) (5,7)
1 (6,7)

1

Table 2: All triads in a 7 by 7 matrix with elements which are neighbors

Inconsistent assessments cannot be accurate but after approximation,
they may be closer to real values. Let us assume that the triad (2, 5, 3)
in Fig. 1 reflects comparisons of three bars with lengths: A, B, and C made
by experts on three different continents by the Internet. Expert 1 compares
A to B giving A/B = 3 and Expert 2 compares A to B giving B/C = 2.
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We could object to A/C = 5 given by Expert 3 after A to C are compared.
Evidently, A/B ∗ B/C is A/C, hence the result is 2 ∗ 3 = 6. However, we
really do not know and will never know who made an estimation error! In
fact, we can safely assume that each expert made “just a little bit of error”.
In particular, none of these three values could be accurate. It cannot be
solved by any theory. A solution is needs to be found on individual basis for
each application.

Figure 1: A graphical representation of the triad (2,5,3)

Each triad generates a PC matrix M of the size 3 by 3. Let us use A,
B, and C to reflect lengths of three bars. The value M [1, 2] = 1 represents
A = B, M [2, 3] = 1 represents B = C hence the expectation is A = C but
the third estimates is 5. It is reflected by the last bar hence the error is 500%.
As assumed, x can take any arbitrary value and so can the estimation error.
Thus, we have made our point and presented the error tolerance for small
values of n in Tab. 3. PC matrix with triads (1, x, 1) is of a considerable
importance and it is analyzed in Section 6.

4 Axiomatization of inconsistency

It is generally assumed that it was Saaty who in [16] defined PC matrix A as
consistent if and only if aij ∗ ajk = aik for i, j, k = 1, 2, ..., n. However, incon-
sistency was defined and examined before 1977, by at least these four studies
published between 1939 and 1961: [12, 10, 7, 17]. To our knowledge, no
axiomatization has ever been proposed for the general case of pairwise com-
parisons matrix with real positive entries, although it seems that attempts
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have been made for matrices with integer values for win-tie-loss entries.

The common sense expectations for the inconsistency indicator ii of a
triad T = (x, y, z) are:

1. ii = 0 for y = x ∗ z,

2. ii ∈ [0, 1) - by common sense, we cannot achieve “ideal inconsistency”,

3. for a consistent triad ii(x, y, z) = 0 with xz = y, increasing or decreas-
ing x, y, z results in increasing ii(x, y, z).

The third axiom is crucial for any axiomatization. Without this ax-
iom, an inconsistency indicator would not make practical sense. For any
assumed definition for inconsistency, an inconsistency indicator of a triad
T ′ = (x′, y′, z′) cannot be smaller than of T = (x, y, z) if it is worse by
one of more coordinates, which is what the third axiom is about. That is,
ii(x′, y′, z′) ≥ ii(x, y, z). It is a reasonable expectation that the worsening of
a triad, used in the definition of consistency (also in [16]), cannot make the
entire matrix more consistent.
For ii(x, y, z) > 0, we have two cases:

(a) xz < y

(b) xz > y

In case of:

(a) if x′z′ < xz&y′ > y then ii(x, y, z) < ii(x′, y′, z′)

(b) if x′z′ > xz&y′ < y then ii(x, y, z) < ii(x′, y′, z′)

Let us look at the following two examples:

• ii(1.5, 2, 2.5) will increase if we increase 1.5 or 2.5, since 1.5*2.5 is
already greater than 2. On the other hand, decreasing 2 should also
increase the inconsistency.

• ii(1.5, 2.5, 1.2) will increase if we increase 2.5, since it is greater than
1.5*1.2=1.8, but decreasing 1.5 or 1.2 should also increase inconsistency
for the same reason.
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Based on the proposed axioms for inconsistency and [13], let us define:

f(x, y, z) = 1−min
{ y

xz
,
xz

y

}

.
It is equivalent to:

f(x, y, z) = 1− e−| ln( y

xz
)|

.
The expression | ln( y

xz
)| is the distance of the triad T from 0. When this

distance increases, the f(x, y, z) also increases. It is important to notice here
that this definition allows us to localize the inconsistency in the matrix PC
and it is of a considerable importance for most applications.

Another possible definition of the inconsistency has a global character and
needs a bit more explanations. Let A = {aij}

n
i,j=1 be a reciprocal positive

matrix. The matrix A is consistent if and only if for any 1 ≤ i < j ≤ n we
have:

aij = ai,i+1ai+1,i+2 . . . aj−1,j.

Therefore, we may define inconsistency indicator of A as:

ii(A) = 1− min
1≤i<j≤n

(

min
( aij
ai,i+1ai+1,i+2 . . . aj−1,j

,
ai,i+1ai+1,i+2 . . . aj−1,j

aij

))

It is equivalent to:

ii(A) = 1−max
i<j

(

1− e
−

∣

∣

∣
ln

(

aij

ai,i+1ai+1,i+2...aj−1,j

∣

∣

∣

)

)

Both ii definitions have some advantages and disadvantages. The first
definition allows us to find the localization of the inconsistency. The second
definition may be useful when the global inconsistency is more important.
The first definition follows what is adequately described by the idiom: “one
bad apple spoils the barrel”. A hybrid of using two definitions may be a
practical solution in applications. Alternatively, both definitions can be used
in a sequence.
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5 The analysis of CPC(x, n) matrix

In this section, we will consider a pairwise matrix with all 1s expect for
two corners (hence corner comparisons matrix or CPC). Consider the matrix
CPC(x, n), with x > 1, defined by

CPC(x, n) =















1 1 · · · 1 x
1 1 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 1
x−1 1 · · · 1 1















∈ Mn×n(R)

By the Perron-Frobenius theorem, the principal eigenvalue λmax corresponds
to a unique (up to constant multiple) eigenvector w = {wi}

n
i=1 with positive

entries. Since the rows r2, r3 . . . , rn−1 of the matrix CPC(x, n) are equal the
eigenvector, w satisfies w2 = w3 = . . . = wn−1. After normalization we may
assume that

w = (a, 1, 1, . . . , 1, b).

The eigenvalue equation CPC(x, n)w = λmaxw is reduced to the system of
three equations with three unknown a, b and λmax.

a+ n− 2 + bx = λmaxa,

a+ n− 2 + b = λmax,
a

x
+ n− 2 + b = λmaxb.

By solving the system consisting of the first and the last linear equations,
relative to a and b, we get

a = (n− 2)
x−1 + λmax − 1

λ2
max − 2λmax

, b = (n− 2)
x+ λmax − 1

λ2
max − 2λmax

.

Substituting a and b in the second equation by the above expressions (af-
ter some transformations), the following third degree equation for λmax is
obtained:

λ3
max − nλ2

max = (n− 2)(x−1 + x− 2). (1)

We can still transform that into

λmax − n

n− 1
=

n− 2

n− 1

x−1 + x− 2

λ2
max

.
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Since the right hand side is positive, we must have λmax > n.
Therefore

λmax − n

n− 1
≤

n− 2

n− 1

x−1 + x− 2

n2
. (2)

We have assumed that x > 1 therefore x−1 < 1
also

n− 2

n− 1
< 1

hence the following inequality holds:

λmax − n

n− 1
≤

x

n2
. (3)

The inequality (3) has a very important implication. No matter how large
x is, there is always such n that the left hand side of (3) is as small as we wish
it to be. So, regardless of the assumed threshold in [16] (de facto, originally
set to 10%), the matrix is acceptable according to the consistency rule set in
[16].

Evidently, the arbitrarily large x in the matrix CPC(x, n) of size n by n
invalidates the acceptability of this matrix. Hence, by a reductio ad absur-

dum, we are must dismiss the soundness of the eigenvalue-based inconsistency
indicator represented by the left hand side inequality (3).

Example:

Let n = 6 and x = 6. We then get

λmax − n

n− 1
≤

4

5

4 + (1/6)

36
= 0.0925925...

Actually, we can determine numerically that λmax = 6.406123...
Then

λmax − n

n− 1
= 0.081224...

Now, we turn to general reciprocal matrices. By a careful analysis of
[16], we can get the following lower estimates for λmax for general reciprocal
positive matrices.
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Theorem 1. Let A = {aij}
n
i,j be a reciprocal matrix with positive entries.

Then

λmax ≥ n +
3

n

ii2(A)
3
√

1− ii(A)
,

where

ii(A) = 1− min
i<k<j

min

{

aij
aikakj

,
aikakj
aij

}

.

Proof. Let w = {wi}
n
i=1 be the eigenvector corresponding to the eigenvalue

λmax. By the Perron-Frobenius theory, we have wi > 0. Thus

λmax wi =
n

∑

j=1

aijwj.

By an easy transformation and the fact that aii = 1 (see [16], pages 237-238),
we get

nλmax − n =
∑

1≤i<j≤n

(

aij
wj

wi
+ aji

wi

wj

)

.

This implies

n(λmax − n) =
∑

1≤i<j≤n

(

aij
wj

wi
+ aji

wi

wj
− 2

)

(4)

Let us assume that the maximal inconsistency is attained at the triad s <
u < t, i.e.

ii(A) = 1−min

{

ast
asuaut

,
asuaut
ast

}

.

Every term in the sum of (4) is nonnegative as x+x−1−2 ≥ 0, for x > 0 and
aji = a−1

ij . By reducing the sum to three terms corresponding to the triad
s < u < t, we get

n(λmax − n) ≥ asu
wu

ws
+ aus

ws

wu
+ aut

wt

wu
+ atu

wu

wt
+ ast

wt

ws
+ ats

ws

wt
− 6. (5)

Denote
x = asu

wu

ws

, y = aut
wt

wu

, α =
asuaut
ast

.

Then the right hand side of (5) is given by

f(x, y) := x+ x−1 + y + y−1 + α−1xy + αx−1y−1 − 6.
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By calculating the partial derivatives of f(x, y) and equating them to zero,
we can easily determine that the minimal value of f(x, y) is attained for

x = y = α1/3.

We will consider the case α ≤ 1, i.e. ii(A) = 1−α (the other case α > 1 can
be dealt with similarly). We have

f(x, y) ≥ 3(α1/3 + α−1/3)− 6 = 3α−1/3(1− α1/3)2 ≥

= 3α−1/3

(

1− α

1 + α1/3 + α2/3

)2

≥
1

3
α−1/3(1− α)2 =

1

3

ii2(A)
3
√

1− ii(A)
.

Summarizing we get

n(λmax − n) ≥
1

3

ii2(A)
3
√

1− ii(A)
,

which yields the conclusion.

Remark. Theorem 1 yields

λmax − n

n− 1
≥

1

3(n− 1)n

ii2(A)
3
√

1− ii(A)
.

Thus for given n (say n = 6), the quantity explodes if the indicator ii(A)
approaches the value 1.

We can obtain another lower estimate for λmax, as well which takes into
account the total inconsistency information of the matrix A.

Theorem 2. Let T denote the set of all triads in the matrix A and ii(t) be

the inconsistency indicator of the triad t, i.e. for t = (i, k, j) with i < k < j,
let

ii(t) = 1−min

{

aij
aikakj

,
aikakj
aij

}

.

Then

λmax ≥ n +
1

3n(n− 2)

∑

t∈T

ii2(t)
3
√

1− ii(t)
.
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Proof. Every term auv with 1 ≤ u < v ≤ n belongs to n−2 triads. Therefore
the formula (4) implies

(n− 2)n (λmax − n)

=
∑

i<k<j

[

aik
wk

wi
+ aki

wi

wk
+ akj

wj

wk
+ ajk

wk

wj
+ aij

wj

wi
+ aji

wi

wj
− 6

]

.

By the proof of Theorem 1 we get that for α = min{aikakj/aij , aij/aikakj}
and t = (i, k, j) we have

aik
wk

wi

+ aki
wi

wk

+ akj
wj

wk

+ ajk
wk

wj

+ aij
wj

wi

+ aji
wi

wj

− 6

≥
1

3
α−1/3(1− α)2 =

1

3

ii2(t)
3
√

1− ii(t)
.

Hence

(n− 2)n (λmax − n) ≥
1

3

∑

t∈T

ii2(t)
3
√

1− ii(t)
.

The CPC(x, n) matrix in the above example shows that the eigenvalue-
based consistency index (CI) tolerates error of an arbitrary value for the large
enough n (the matrix size). According to AHP theory, the CPC(x, n) matrix
is considered “consistent enough” (or “good enough”) for CI ≤ 0.1, although
it has n arbitrarily erroneous elements in it. The number n of the erroneous
elements grow to infinity with the growing n and it invalidates using CI for
measuring the inconsistency.

5.1 The interpretation of the CPC(x, n) analysis

Matrix CPC(x, n) of the size of 3 by 3 has only one triad: (1, x, 1). Trivially,
the only value of x for this matrix to be consistent is 1 (x = 1 ∗ 1). For
x = 2.62, we have:

A3 =





1 1 2.62
1 1 1

0.381679389 1 1




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The principal eigenvalue of A3 is 3.10397 hence CI = 0.051985 and it
is less than 10% of RI = 0.52, hence acceptable due to the fact that the
proposed consistency index (CI) is defined in [16] as:

CI =
λmax − n

n− 1

and the consistency ratio (CR) defined as

CR =
CI

RI

where RI is the average value of CI for random matrices and computed as
0.52 (decreased from 0.58 as stipulated in [16]).

As we previously observed, x should be 1, so x = 2.62 gives us 262%
error and it is what we call the tolerance error since for matrices 3 by 3, RI
has been computed as 0.5245 hence CR < 0.1 for CPC(2.62, 3). The toler-
ance error, for other n from 3 to 7 has been computed and presented in Tab. 3

Table 3: Error tolerance of eigenvalue-based inconsistency for CPC(x, n)

n error tolerance for (1,x,1)
3 262%
4 417%
5 618%
6 875%
7 1,170%

CPC(x, n) of the size n by n has n − 2 triads of this shape: (1, x, 1).
All triads are formed from these matrix elements (aij, aik, ajk) based the
consistency condition is aik = aij ∗ ajk. Not only the equality does not hold
for x > 1 but for aij = ajk = 1 and x = aij ∗ ajk the inaccuracy grows with
the growing x. For CPC(2.62, 3), it is illustrated by Fig. 2. The question is
evident: “Would you consider such three bars are equal?” and if the answer
is not, “why is it acceptable for AHP to tolerate such error?”

Values x can be an arbitrarily large value which creates a problem. As-
suming that the exact values are set to aij = ajk = 1, the value x is computed
as aij∗ajk = 1 hence the estimation error for x is x/(1∗1) hence x or x∗100%.
For example, for n = 7, x = 4.25 giving the tolerance error 1,170%. However,
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Figure 2: Triad (a, b, c) with the 262% error tolerated by the eigenvalue-based
inconsistency for CPC(2.62, 3)

x can be 1,000,000%, or more since in Section 6, we have provided a proof
that there is such n for which CI ≤ 0.1 hence acceptable. The 10% threshold,
originally set as “the consistency rule” in [16] and later on slightly decreased
for larger n but it does not matter for the inequality (3) in Section 6 if it is
10% or any other fixed value.

According the the results in Section 6, there is always such n for which
the deviation of the principal eigenvalue from n is small enough to consider
CPC(x, n) matrix acceptable while the arbitrarily large x has n − 2 triads
with an unacceptably high error x.

The distance-based inconsistency was introduced in [13] and indepen-
dently analyzed in [2]. Its convergence analysis was published in [15]. Evi-
dently, it does not tolerates big values of x in triads (1, x, 1). It specifically
postulates to re-examine input data for ii > 1/3, hence x > 1.5 is proclaimed
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Figure 3: Error tolerance of eigenvalue-based inconsistency for CPC(x, n)

to be suspiciously high and the PC matrix needs to be re-examined.

6 The analysis of FPC(x, n) matrix

We fear that some of the AHP supporters may hold to the last hope by
believing that “it is only one value in the CPC(x, n) matrix” since it has x
in one matrix element (in fact, x−1 in another corner). However, we have
a surprise for them by what we call FPC (the “full” pairwise comparisons
matrix or the PC matrix full of x). Unlike CPC(x, n), it has all erroneous
triads.

Consider the matrix FPC(x, n), with x > 1, defined by

FPC(x, n) =















1 x · · · x x
x−1 1 · · · x x
...

...
. . .

...
...

x−1 x−1 · · · 1 x
x−1 x−1 · · · x−1 1















∈ Mn×n(R)
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Let w be the eigenvector corresponding to the principal eigenvalue λmax.
Thus

x−1(w1 + . . .+ wk−1) + wk + x(wk+1 + . . .+ wn) = λwk

for k = 1, 2, . . . , n.

We notice that for k = 1, the first term is missing while for k = n, the last
term is missing. By subtracting equations corresponding to k and k − 1, we
get the following:

x−1wk−1 + wk − wk−1 − xwk = λwk − λwk−1

which gives

wk = wk−1
x−1 − 1 + λ

x− 1 + λ

for k = 2, . . . , n.

hence

wk =

(

x−1 − 1 + λ

x− 1 + λ

)k−1

for k = 1, 2, . . . , n.

Substituting it into the first equation results in

1 + x(w2 + w2
2 + . . .+ wn−1

2 ) = λ

hence

1 + x
wn

2 − w2

w2 − 1
= λ

by using

w2 =
x−1 − 1 + λ

x− 1 + λ

and by transforming the last equation, we get

(

x−1 − 1 + λ

x− 1 + λ

)n

=
1

x2
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therefore

λ =
x− 1

x

x+ x
2

n

x
2

n − 1

Example:

For x = 2.25 and n = 4, we have λmax = 25
6

Thus
λmax − n

n− 1
=

25
6
− 4

3
=

1

18
≈ 0.055555556

therefore 225% error is tolerated by AHP theory for n = 4. We leave to the
reader the soundness of entering three inaccurate (by 55.6%) comparisons
into the matrix FPC(x, n) and claiming that such matrix is acceptable.
For x = 2.84 and n = 7, the tolerated error increases to 64.79%. These
tolerated errors although a bit less impressive than for CPC(x, n) are still
by far too high for the estimation lengths of randomly generated bars as it
was demonstrated by a Monte Carlo Study in [14] where a 5% error was
reported. The error 284% is bigger than 262% illustrated in Fig.2. The same
question remains about error tolerance acceptableness. The authors of this
study consider it unacceptable. The question is if you consider three bars
in Fig.2 as equal enough. The only equality of this kind, which comes to
our minds is: “All animals are equal, but some animals are more equal than
others.” [George Orwell, Animal Farm].

7 Conclusions

The presented inconsistency axiomatization is simple, elegant, a consider-
able step forward and a sound mathematical foundation for the further PC
research. It finally allows us to define proper inconsistency indicators, re-
gardless of whether or not they are localizing the inconsistency or serve as
global indicators of inconsistencies in pairwise comparisons matrices. The
distance-based inconsistency definition localizes inconsistency and produces
correct results.

The eigenvalue-based consistency index (CI) fails to increase with the
growing size of the PC matrix and tolerates the growing number of triads
with each of them having an unacceptable level of inconsistency. As proven
in Section 6, AHP thresholds (both old and recently modified) are unable to
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detect large quantities of large inaccuracies existing in CPC(x, n) matrices.
There is always n, for which these inaccuracies are lost in the matrix, no
matter how large they are. The discussed eigenvalue-based inconsistency
indicator is not precise enough for the detection of individual triads, which
turns to be erroneous but “averaged” by the eigenvalue processing. It is
anticipated that every statistical inconsistency indicator, including those with
roots in the principal eigenvalue, may not be good indicators of the problems
existing in pairwise comparisons. Simply, they to not look deep enough
into relationships existing in cycles of which triads are the most important
minimal cycles (as pointed out in this study, one or two elements cannot
create an inconsistency cycle). Hopefully, proponents of other inconsistency
indicators will examine their definition by using the proposed axiomatization.
Certainly, getting help from authors of this study is a vital solution.

During the final stages of editing of our study for publication, the nu-
merical results strongly supporting our finding were located in [20] with the
following text in the conclusions:

“In this paper, by simulation analysis, we obtain the following
result: as the matrix size increases, the percent of the matrices
with acceptable consistency (CR ≤ 0.1), decrease dramatically,
but, on the other hand, there will be more and more contradictory
judgments in these sufficiently consistent matrices. This paradox
shows that it is impossible to find some proper critical values
of CR for different matrix sizes. Thus we argue that Saaty’s
consistency test could be unreasonable.”

It is not a paradox anymore. In this study, we have provided a mathematical
proof and reasoning for it.
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